Publications by authors named "Sherry A Dunbar"

Combination and polyvalent vaccines not only provide protection against several different pathogens at the same time but can also increase vaccine protection against pathogens that have closely related pathogenic strains or serotypes. Multiplexed serological testing is a preferred method for determining the efficacy of combination and polyvalent vaccines, as it reduces the need for conducting multiple individual assays to confirm immune responses and cross-reactivity, uses less sample, and can be faster, more reliable, and more cost-effective. Bead-based suspension array technologies, such as the Luminex xMAP Technology, are often used for development of multiplexed serological assays for various vaccine trials and for routine testing in clinical laboratories to determine immune status of vaccinated individuals.

View Article and Find Full Text PDF

Multiplexing in biological assays allows the simultaneous detection of multiple analytes in a single reaction, which reduces time, labor, and cost as compared to single reaction-based detection methods. Microsphere- or bead-based suspension array technologies, such as the Luminex® xMAP® system, offer high-throughput detection of nucleic acids through a variety of different assay chemistries. Common with most nucleic acid chemistries, for bead-based or other microarray technologies, is the need for efficient extraction and purification of the nucleic acids from the specimen of interest.

View Article and Find Full Text PDF

Bloodstream infection is a major health concern, responsible for considerable morbidity and mortality across the globe. Prompt identification of the responsible pathogen in the early stages of the disease allows clinicians to implement appropriate antibiotic therapy in a timelier manner. Rapid treatment with the correct antibiotic not only improves the chances of patient survival, but also significantly reduces the length of hospital stay and associated healthcare costs.

View Article and Find Full Text PDF

spp. are a major cause of foodborne illness throughout the world. Traditional serotyping by antisera agglutination has been used as a standard identification method for many years but newer nucleic acid-based tests have become available that may provide advantages in workflow and test turnaround time.

View Article and Find Full Text PDF

The Aries assay (Aries BA) (Luminex Corporation) recently received FDA clearance for the detection and differentiation of and nucleic acids in nasopharyngeal swab (NPS) samples. The objective of this study was to evaluate the performance of the Aries BA in comparison to that of the BioFire FilmArray respiratory panel (RP). The Aries BA was evaluated using retrospective, remnant nasopharyngeal swabs (NPS), previously tested by FilmArray RP.

View Article and Find Full Text PDF

Multiplexed analysis has the advantage of allowing for simultaneous detection of multiple analytes in a single reaction vessel which reduces time, labor, and cost as compared to single-reaction-based detection methods. Microsphere-based suspension array technologies, such as the Luminex® xMAP® system, offer high-throughput detection of both protein and nucleic acid targets in multiple assay chemistries. After Luminex's founding in 1995, it quickly became the leader in bead-based multiplexing solutions.

View Article and Find Full Text PDF

An evaluation of the Luminex NxTAG Respiratory Pathogen Panel was performed on 404 clinical respiratory specimens. Clinical sensitivities and specificities of the assay compared to those of the reference methods were 80.0% to 100.

View Article and Find Full Text PDF

In this chapter we describe two commercially available bead-based molecular assays for detection, identification and serotyping of Salmonella. The xTAG(®) Gastrointestinal Pathogen Panel (GPP) is a qualitative multiplex test for the simultaneous detection of nucleic acids from Salmonella plus 14 other gastroenteritis-causing bacteria, viruses, and parasites from stool specimens. xTAG GPP uses the Luminex(®) xTAG universal array technology for the identification of specific target sequences combined with the xMAP(®) bead multiplexing platform for detection of the targets that were present in the starting sample.

View Article and Find Full Text PDF

Gastroenteritis persists as a worldwide problem, responsible for approximately 2 million deaths annually. Traditional diagnostic methods used in the clinical microbiology laboratory include a myriad of tests, such as culture, microscopy, and immunodiagnostics, which can be labor intensive and suffer from long turnaround times and, in some cases, poor sensitivity. [corrected].

View Article and Find Full Text PDF

Sequence variations in the human genome can affect the development of diseases and provide markers for the identification of genetic diseases and drug susceptibility. Single Nucleotide Polymorphisms (SNPs), the most abundant sequence variations in the genome, are used in pharmacogenetics as indicators of drug therapy efficacy in individuals and are important road maps in the route to personalized medicine. This chapter describes the development of PCR based custom multiplex SNP mutation analysis assays using Luminex(®) Multi-Analyte Profiling (xMAP(®)) Technology.

View Article and Find Full Text PDF

Genotyping of Mycobacterium tuberculosis strains became indispensable for understanding tuberculosis transmission dynamics and designing measures to combat the disease. Unfortunately, typing involves sophisticated laboratory analysis, is expensive, and requires a high level of technical expertise, which limited its use in the resource-poor countries where the majority of tuberculosis cases occur. Spoligotyping is a PCR-based M.

View Article and Find Full Text PDF

Harmful algal blooms (HABs) are a serious public health risk in coastal waters. As the intensity and frequency of HABs continue to rise, new methods of detection are needed for reliable identification. Herein, we developed a high-throughput, multiplex, bead array technique for the detection of the dinoflagellates Karenia brevis and Karenia mikimotoi.

View Article and Find Full Text PDF

Mycobacterium species cause a variety of clinical diseases, some of which may be species specific. Therefore, it is clinically desirable to rapidly identify and differentiate mycobacterial isolates to the species level. We developed a rapid and high-throughput system, MycoID, to identify Mycobacterium species directly from acid-fast bacillus (AFB)-positive mycobacterial culture broth.

View Article and Find Full Text PDF

Real-time Polymerase Chain Reaction (PCR) is a quickly developing technology that has built upon the classic end-point PCR detection methods. In this article, we will review recent patents related to various chemistries used for nucleic acid detection during real-time PCR amplification. Real-time assay chemistries are subdivided into several main categories including DNA-binding agents, molecular beacons, hybridization probes, hydrolysis probes, and dye-primer based systems.

View Article and Find Full Text PDF

Diagnoses of opportunistic mycotic infections constitute an increasing clinical problem. Conventional diagnostic tests are time consuming and lack specificity and sensitivity for accurate and timely prognoses. This unit provides a comprehensive description of a fungal detection method that combines nucleic acid signatures with flow cytometry.

View Article and Find Full Text PDF

We describe a suspension array hybridization assay for rapid detection and identification of Salmonella and other bacterial pathogens using Luminex xMAP technology. The Luminex xMAP system allows simultaneous detection of up to 100 different targets in a single multiplexed reaction. Included in the method are the procedures for (1) design of species-specific oligonucleotide capture probes and PCR amplification primers, (2) coupling oligonucleotide capture probes to carboxylated microspheres, (3) hybridization of coupled microspheres to oligonucleotide targets, (4) production of targets from DNA samples by PCR amplification, and (5) detection of PCR-amplified targets by direct hybridization to probe-coupled microspheres.

View Article and Find Full Text PDF

A suspension array hybridization assay is described for the detection of 31 mutations and polymorphisms in the cystic fibrosis transmembrane conductance regulator (CFTR) gene using Luminex xMAP technology. The Luminex xMAP system allows simultaneous detection of up to 100 different targets in a single multiplexed reaction. Included in the method are the procedures for design of oligonucleotide capture probes and PCR amplification primers, coupling oligonucleotide capture probes to carboxylated microspheres, hybridization of coupled microspheres to oligonucleotide targets, production of targets from DNA samples by multiplexed PCR amplification, and detection of PCR-amplified targets by direct hybridization to probe-coupled microspheres.

View Article and Find Full Text PDF

Background: As we enter the post-genome sequencing era and begin to sift through the enormous amount of genetic information now available, the need for technologies that allow rapid, cost-effective, high-throughput detection of specific nucleic acid sequences becomes apparent. Multiplexing technologies, which allow for simultaneous detection of multiple nucleic acid sequences in a single reaction, can greatly reduce the time, cost and labor associated with single reaction detection technologies.

Methods: The Luminex xMAP system is a multiplexed microsphere-based suspension array platform capable of analyzing and reporting up to 100 different reactions in a single reaction vessel.

View Article and Find Full Text PDF

Escherichia coli, Salmonella, Listeria monocytogenes and Campylobacter jejuni are bacterial pathogens commonly implicated in foodborne illnesses. Generally used detection methods (i.e.

View Article and Find Full Text PDF

Detailed molecular analysis of the Rickettsia prowazekii ATP/ADP translocase, an obligate exchange transport system that is specific for ATP and ADP, has been extremely difficult due to limited quantities of material available from these obligate intracytoplasmic bacteria and by the toxicity and poor expression in recombinant Escherichia coli expression systems. In this study, a stable and controllable system for the increased expression of the rickettsial ATP/ADP translocase was developed in E. coli where the expression of translocase from the bacteriophage T7 promoter in the pET11a vector led to a 26-fold increase in ATP transport activity and a 34-fold increase in translocase protein as compared to the expression with the native rickettsial promoter in E.

View Article and Find Full Text PDF