Cryptococcus neoformans is a fungal pathogen that causes serious disease in immunocompromised individuals. The organism produces a distinctive polysaccharide capsule that is necessary for its virulence, a predominantly polysaccharide cell wall, and a variety of protein- and lipid-linked glycans. The glycan synthetic pathways of this pathogen are of great interest.
View Article and Find Full Text PDFLT-IIb, a type II heat-labile enterotoxin of Escherichia coli, is a potent immunologic adjuvant with high affinity binding for ganglioside GD1a. Earlier study suggested that LT-IIb bound preferentially to the terminal sugar sequence NeuAcalpha2-3Galbeta1-3GalNAc. However, studies in our laboratory suggested a less restrictive binding epitope.
View Article and Find Full Text PDFThe combined stresses of moderate heat shock (45 degrees C) and analog-induced glucose deprivation constitute a lethal stress for Neurospora crassa. We found that this cell death requires fatty acid synthesis and the cofactor biotin. In the absence of the cofactor, the stressed cells are particularly sensitive to exogenous ceramide, which is lethal at low concentrations.
View Article and Find Full Text PDFThe Manalpha1,3(Xylbeta1,2)Manalpha structural motif is common to both capsular polysaccharides of Cryptococcus neoformans and to cryptococcal glycosphingolipids. Comparative analysis of glycosphingolipid structural profiles in wild-type and mutant strains showed that the Xylbeta1,2-transferase (Cxt1p) that participates in capsular polysaccharide biosynthesis is also the sole transferase responsible for adding xylose to C. neoformans glycosphingolipids.
View Article and Find Full Text PDFAcidic glycosphingolipid components were extracted from the opportunistic mycopathogen Aspergillus fumigatus and identified as inositol phosphorylceramide and glycosylinositol phosphorylceramides (GIPCs). Using nuclear magnetic resonance sppectroscopy, mass spectrometry, and other techniques, the structures of six major components were elucidated as Ins-P-Cer (Af-0), Manp(alpha1-->3)Manp(alpha1-->2)Ins-P-Cer (Af-2), Manp(alpha1-->2)Manp(alpha1-->3)Manp(alpha1-->2)Ins-P-Cer (Af-3a), Manp(alpha1-->3)[Galf(beta1-->6)]Manp(alpha1-->2)-Ins-P-Cer (Af-3b), Manp(alpha1-->2)-Manp(alpha1-->3)[Galf(beta1-->6)]Manp(alpha1-->2)Ins-P-Cer (Af-4), and Manp(alpha1-->3)Manp(alpha1-->6)GlcpN(alpha1-->2)Ins-P-Cer (Af-3c) (where Ins = myo-inositol and P = phosphodiester). A minor A.
View Article and Find Full Text PDF