Publications by authors named "Sherri Mason"

Microplastic contamination in reservoirs is receiving increasing attention worldwide. However, a holistic understanding of the occurrence, drivers, and potential risks of microplastics in reservoirs is lacking. Building on a systematic review and meta-analysis of 30 existing publications, we construct a global microplastic dataset consisting of 440 collected samples from 43 reservoirs worldwide which we analyze through a framework of Data processing and Multivariate statistics (DM).

View Article and Find Full Text PDF

The spatial distribution, concentration, particle size, and polymer compositions of microplastics in Lake Michigan and Lake Erie sediment were investigated. Fibers/lines were the most abundant of the five particle types characterized. Microplastic particles were observed in all samples with mean concentrations for particles greater than 0.

View Article and Find Full Text PDF

Microplastic contamination was studied along a freshwater continuum from inland streams to the Milwaukee River estuary to Lake Michigan and vertically from the water surface, water subsurface, and sediment. Microplastics were detected in all 96 water samples and 9 sediment samples collected. Results indicated a gradient of polymer presence with depth: low-density particles decreased from the water surface to the subsurface to sediment, and high-density particles had the opposite result.

View Article and Find Full Text PDF

Eleven globally sourced brands of bottled water, purchased in 19 locations in nine different countries, were tested for microplastic contamination using Nile Red tagging. Of the 259 total bottles processed, 93% showed some sign of microplastic contamination. After accounting for possible background (lab) contamination, an average of 10.

View Article and Find Full Text PDF

Plastic pollution has been well documented in natural environments, including the open waters and sediments within lakes and rivers, the open ocean and even the air, but less attention has been paid to synthetic polymers in human consumables. Since multiple toxicity studies indicate risks to human health when plastic particles are ingested, more needs to be known about the presence and abundance of anthropogenic particles in human foods and beverages. This study investigates the presence of anthropogenic particles in 159 samples of globally sourced tap water, 12 brands of Laurentian Great Lakes beer, and 12 brands of commercial sea salt.

View Article and Find Full Text PDF

Microplastics (MPs; <5 mm) in aquatic environments are an emerging contaminant of concern due to their possible ecological and biological consequences. This study addresses that MP quantification and morphology to assess the abundance, distribution, and polymer types in littoral surface sediments of the Persian Gulf were performed. A two-step method, with precautions taken to avoid possible airborne contamination, was applied to extract MPs from sediments collected at five sites during low tide.

View Article and Find Full Text PDF

Microplastics are ubiquitous pollutants in aquatic habitats and commonly found in the gut contents of fish yet relatively little is known about the retention of these particles by fish. In this study, goldfish were fed a commercial fish food pellet amended with 50 particles of one of two microplastics types, microbeads and microfibers. Microbeads were obtained from a commercial facial cleanser while microfibers were obtained from washed synthetic textile.

View Article and Find Full Text PDF

Plastic debris is a growing contaminant of concern in freshwater environments, yet sources, transport, and fate remain unclear. This study characterized the quantity and morphology of floating micro- and macroplastics in 29 Great Lakes tributaries in six states under different land covers, wastewater effluent contributions, population densities, and hydrologic conditions. Tributaries were sampled three or four times each using a 333 μm mesh neuston net.

View Article and Find Full Text PDF

Municipal wastewater effluent has been proposed as one pathway for microplastics to enter the aquatic environment. Here we present a broad study of municipal wastewater treatment plant effluent as a pathway for microplastic pollution to enter receiving waters. A total of 90 samples were analyzed from 17 different facilities across the United States.

View Article and Find Full Text PDF

Despite widespread detection of microplastic pollution in marine environments, data describing microplastic abundance in urban estuaries and microplastic discharge via treated municipal wastewater are limited. This study presents information on abundance, distribution, and composition of microplastic at nine sites in San Francisco Bay, California, USA. Also presented are characterizations of microplastic in final effluent from eight wastewater treatment plants, employing varying treatment technologies, that discharge to the Bay.

View Article and Find Full Text PDF

Recent research has documented microplastic particles (< 5 mm in diameter) in ocean habitats worldwide and in the Laurentian Great Lakes. Microplastic interacts with biota, including microorganisms, in these habitats, raising concerns about its ecological effects. Rivers may transport microplastic to marine habitats and the Great Lakes, but data on microplastic in rivers is limited.

View Article and Find Full Text PDF

Despite the large and growing literature on microplastics in the ocean, little information exists on microplastics in freshwater systems. This study is the first to evaluate the abundance, distribution, and composition of pelagic microplastic pollution in a large, remote, mountain lake. We quantified pelagic microplastics and shoreline anthropogenic debris in Lake Hovsgol, Mongolia.

View Article and Find Full Text PDF

Neuston samples were collected at 21 stations during an ~700 nautical mile (~1300 km) expedition in July 2012 in the Laurentian Great Lakes of the United States using a 333 μm mesh manta trawl and analyzed for plastic debris. Although the average abundance was approximately 43,000 microplastic particles/km², station 20, downstream from two major cities, contained over 466,000 particles/km², greater than all other stations combined. SEM analysis determined nearly 20% of particles less than 1 mm, which were initially identified as microplastic by visual observation, were aluminum silicate from coal ash.

View Article and Find Full Text PDF

Rate constants for the gas-phase reactions of the OH radical with 1,4-butanediol,4-hydroxybutanal, and 3-hydroxypropanalwere measured at 298 +/- 2 K and atmospheric pressure using a relative rate technique and with 4-hydroxybutanal and 3-hydroxypropanal being formed in situ from the OH + 1,4-butanediol reaction, and were (in units of 10(-11) cm(3) molecule(-1) s(-1)) 3.67 +/- 0.31, 3.

View Article and Find Full Text PDF

Rate constants for the gas-phase reactions of NO(3) radicals and O(3) with a series of C(6)-C(14) 1-alkenes and 2-methyl-1-alkenes have been measured at 296 +/- 2 K and atmospheric pressure of air using relative rate methods. For the NO(3) radical reactions, the rate constants obtained (in units of 10(-14) cm(3) molecule(-1) s(-1)) were: 1-hexene, 2.00 +/- 0.

View Article and Find Full Text PDF