Publications by authors named "Sherratt T"

It has long been hypothesized that a species that is relatively easy to catch by predators may face selection to resemble a species that is harder to catch. Several experiments using avian predators have since supported this 'evasive mimicry' hypothesis. However, the sudden movement of artificial evasive prey in each of the above experiments may have startled the predators, generating an avoidance response unrelated to difficulty of capture.

View Article and Find Full Text PDF

Prey seldom rely on a single type of antipredator defence, often using multiple defences to avoid predation. In many cases, selection in different contexts may favour the evolution of multiple defences in a prey. However, a prey may use multiple defences to protect itself during a single predator encounter.

View Article and Find Full Text PDF

Signal detection theory (SDT) has been widely applied to identify the optimal discriminative decisions of receivers under uncertainty. However, the approach assumes that decision-makers immediately adopt the appropriate acceptance threshold, even though the optimal response must often be learned. Here we recast the classical normal-normal (and power-law) signal detection model as a contextual multi-armed bandit (CMAB).

View Article and Find Full Text PDF

Males have finite resources to spend on reproduction. Thus, males rely on a 'time investment strategy' to maximize their reproductive success. For example, male Drosophila melanogaster extends their mating duration when surrounded by conditions enriched with rivals.

View Article and Find Full Text PDF

The initial evolution of warning signals in unprofitable prey, termed aposematism, is often seen as a paradox because any new conspicuous mutant would be easier to detect than its cryptic conspecifics and not readily recognized by naïve predators as defended. One possibility is that permanent aposematism first evolved through species using hidden warning signals, which are only exposed to would-be predators on encounter. Here, we present a large-scale analysis of evolutionary transitions in amphibian antipredation coloration and demonstrate that the evolutionary transition from camouflage to aposematism is rarely direct but tends to involve an intermediary stage, namely cryptic species that facultatively reveal conspicuous coloration.

View Article and Find Full Text PDF

Deimatic behaviours, also referred to as startle behaviours, are used against predators and rivals. Although many are spectacular, their proximate and ultimate causes remain unclear. In this review we aim to synthesise what is known about deimatic behaviour and identify knowledge gaps.

View Article and Find Full Text PDF

Flash behaviour is widespread in the animal kingdom and describes the exposure of a hidden conspicuous signal as an animal flees from predators. Recent studies have demonstrated that the signal can enhance survivorship by leading pursuing predators into assuming the flasher is also conspicuous at rest. Naturally, this illusion will work best if potential predators are ignorant of the flasher's resting appearance, which could be achieved if the prey flees while the predator is relatively far away.

View Article and Find Full Text PDF

AbstractSignal detection theory (SDT) has been used to model optimal stimulus discrimination for more than four decades in evolutionary ecology. A popular standard model that maximizes payoff per encounter was recently criticized for being too simplistic, leading to erroneous predictions. We review a number of SDT models that have received less attention but have explicitly taken repeated encounters into account, focusing on prey choice, mate search, aggressive mimicry, and the aiding of kin.

View Article and Find Full Text PDF

AbstractThe mimicry of one species by another provides one of the most celebrated examples of evolution by natural selection. Edible Batesian mimics deceive predators into believing they may be defended, whereas defended Müllerian mimics have evolved a shared warning signal, more rapidly educating predators to avoid them. However, it may benefit hungry predators to attack defended prey, while the benefits of learning about unfamiliar prey depends on the future value of this information.

View Article and Find Full Text PDF
Article Synopsis
  • Some animals can hide their bright colors and only show them for a short time to scare off or confuse predators.
  • Scientists did experiments to see how these hidden colors help the animals survive better against predators that already know they shouldn't eat them.
  • They discovered that animals with hidden signals are more common later in the season than those without hidden colors.
View Article and Find Full Text PDF

To survive and pass on their genes, animals must perform many tasks that affect their fitness, such as mate-choice, foraging, and predator avoidance. The ability to make rapid decisions is dependent on the information that needs to be sampled from the environment and how it is processed. We highlight the need to consider visual attention within sensory ecology and advocate the use of eye-tracking methods to better understand how animals prioritise the sampling of information from their environments prior to making a goal-directed decision.

View Article and Find Full Text PDF

Wolbachia is one of the most common endosymbionts found infecting arthropods. Theory predicts symbionts like Wolbachia will be more common in species radiations, as host shift events occur with greatest frequency between closely related species. Further, the presence of Wolbachia itself may engender reproductive isolation, and promote speciation of their hosts.

View Article and Find Full Text PDF

While there have been a number of recent advances in our understanding of the evolution of animal color patterns, much of this work has focused on color patterns that are constantly displayed. However, some animals hide functional color signals and display them only transiently through behavioral displays. These displays are widely employed as a secondary defense following detection when fleeing (flash display) or when stationary (deimatic display).

View Article and Find Full Text PDF

Warning signals displayed by defended prey are mimicked by both mutualistic (Müllerian) and parasitic (Batesian) species. Yet mimicry is often imperfect: why does selection not improve mimicry? Predators create selection on warning signals, so predator psychology is crucial to understanding mimicry. We conducted experiments where humans acted as predators in a virtual ecosystem to ask how prey diversity affects the way that predators categorize prey phenotypes as profitable or unprofitable.

View Article and Find Full Text PDF

Climate-induced changes in spatial and temporal occurrence of species, as well as species traits such as body size, each have the potential to decouple symbiotic relationships. Past work has focused primarily on direct interactions, particularly those between predators and prey and between plants and pollinators, but studies have rarely demonstrated significant fitness costs to the interacting, coevolving organisms. Here, we demonstrate that changing phenological synchrony in the latter part of the 20th century has different fitness outcomes for the actors within a Batesian mimicry complex, where predators learn to differentiate harmful "model" organisms (stinging Hymenoptera) from harmless "mimics" (hoverflies, Diptera: Syrphidae).

View Article and Find Full Text PDF

Examples of mimicry are widely celebrated because of the remarkable physical similarities they entail. A new study shows how an ant-mimicking spider uses behaviour to create the illusion of antennae, while walking in a manner resembling ants following pheromone trails.

View Article and Find Full Text PDF

The study of island fauna has greatly informed our understanding of the evolution of diversity. We here examine the phylogenetics, biogeography, and diversification of the damselfly genera and , endemic to the Fiji Islands, to explore mechanisms of speciation in these highly speciose groups. Using mitochondrial (COI, 12S) and nuclear (ITS) replicons, we recovered garli-part maximum likelihood and mrbayes Bayesian phylogenetic hypotheses for 26 species of and eight species/subspecies of .

View Article and Find Full Text PDF

Many cryptic prey have also evolved hidden contrasting colour signals which are displayed to would-be predators. Given that these hidden contrasting signals may confer additional survival benefits to the prey by startling/intimidating predators, it is unclear why they have evolved in some species, but not in others. Here, we have conducted a comparative phylogenetic analysis of the evolution of colour traits in the family Erebidae (Lepidoptera), and found that the hidden contrasting colour signals are more likely to be found in larger species.

View Article and Find Full Text PDF
Article Synopsis
  • Coloration influences how organisms interact with their environments, playing key roles in social signaling, defense mechanisms against predators, and protection from various environmental hazards.
  • Recent methodological advancements are enhancing our understanding of the mechanisms behind color production and perception in animals, while also allowing for extensive and noninvasive global measurements of color.
  • This text outlines the progress made in the study of coloration and highlights emerging challenges within this interdisciplinary research area.
View Article and Find Full Text PDF

Aposematism is an evolved, cross-species association between a preys' unprofitability and the presence of conspicuous signals. Avian predators have been widely employed to understand the evolution of these warning signals However, insect predators are abundant, diverse, and highly visual foragers that have been shown to be capable of learned aversion. Therefore, it is likely that their behaviour also shapes the nature of anti-predator traits.

View Article and Find Full Text PDF

We consider why imperfect deceptive mimics can persist when it appears to be in the predator's interest to discriminate finely between mimics and their models. One theory is that a receiver will accept being duped if the model and mimic overlap in appearance and the relative costs of attacking the model are high. However, a more fundamental explanation for the difficulty of discrimination is not based on perceptual uncertainty, but simply based on a lack of information.

View Article and Find Full Text PDF

Understanding the conditions under which moderately defended prey evolve to resemble better-defended prey and whether this mimicry is parasitic (quasi-Batesian) or mutualistic (Müllerian) is central to our understanding of warning signals. Models of predator learning generally predict quasi-Batesian relationships. However, predators' attack decisions are based not only on learning alone but also on the potential future rewards.

View Article and Find Full Text PDF

Recent theory predicts that males should choose social environments that maximize their relative attractiveness to females by preferentially associating with less attractive rivals, so as to enhance their mating success. Using the Trinidadian guppy (Poecilia reticulata), a highly social species, we tested for non-random social associations among males in mixed-sex groups based on two phenotypic traits (body length and coloration) that predict relative sexual attractiveness to females and sexual (sperm) competitiveness. Based on a well-replicated laboratory dichotomous-choice test of social group preference, we could not reject the null hypothesis that focal males chose randomly between a mixed-sex group that comprised a female and a rival male that was less sexually attractive than themselves and another mixed-sex group containing a sexually more attractive male.

View Article and Find Full Text PDF

Skelhorn et al. introduce eyespots the circular markings resembling vertebrate eyes found on many animals.

View Article and Find Full Text PDF

While the first individuals to discover and maintain territories are generally respected as owners, under some conditions there may be ambiguity as to who got there first. Here we attempt to understand the evolutionary consequences of this ambiguity by developing a pair of game-theoretic models in which we explicitly consider rival residency-based claims to ownership. Following earlier qualitative explanations for residency effects, we assume that either the value of the territory (Model A) or an interloper׳s self-belief that it is the owner (Model B) increases with duration of residency.

View Article and Find Full Text PDF