Publications by authors named "Sherman Wong"

Background: Although numerous studies have established cognitive biases as contributors to surgical adverse events, their prevalence and impact in surgery are unknown. This review aimed to describe types of cognitive bias in surgery, their impact on surgical performance and patient outcomes, their source, and the mitigation strategies used to reduce their effect.

Methods: A literature search was conducted on 9 April and 6 December 2021 using MEDLINE, Embase, PsycINFO, Scopus, Web of Science, Cochrane Central Register of Controlled Trials, and the Cochrane Database of Systematic Reviews.

View Article and Find Full Text PDF

Diamond is an attractive material due to its extreme hardness, high thermal conductivity, quantum optical, and biomedical applications. There is still much that is not understood about how diamonds form, particularly at room temperature and without catalysts. In this work, a new route for the formation of nanocrystalline diamond and the diamond-like phase lonsdaleite is presented.

View Article and Find Full Text PDF

Despite advances in the development of bone substitutes and strict aseptic procedures, the majority of failures in bone grafting surgery are related to nosocomial infections. Development of biomaterials combining both osteogenic and antibiotic activity is, therefore, a crucial public health issue. Herein, two types of intrinsically bactericidal titanium supports were fabricated by using commercially scalable techniques: plasma etching or hydrothermal treatment, which display two separate mechanisms of mechano-bactericidal action.

View Article and Find Full Text PDF

Fluorescence imaging in near-infrared IIb (NIR-IIb, 1500-1700 nm) spectrum holds a great promise for tissue imaging. While few inorganic NIR-IIb fluorescent probes have been reported, their organic counterparts are still rarely developed, possibly due to the shortage of efficient materials with long emission wavelength. Herein, we propose a molecular design philosophy to explore pure organic NIR-IIb fluorophores by manipulation of the effects of twisted intramolecular charge transfer and aggregation-induced emission at the molecular and morphological levels.

View Article and Find Full Text PDF

The incidence of total hip arthroplasty (THA) has been evidently growing over the last few decades. Surface modification, such as polymer grafting onto implant surfaces using poly (2-methacryloyloxyethyl phosphorylcholine) (PMPC), has been gaining attention due to its excellent biocompatibility and high lubricity behaviour resulting in reducing surgical recurrence number and increasing implant lifetime. Investigating thermal stability and mechanical properties of the grafted polymer is, therefore, extremely important as these properties define the failure mechanism of implants.

View Article and Find Full Text PDF

Despite the tremendous acceptance of additively manufactured (AM) Titanium alloys (Ti6Al4V) in the field of biomedical engineering, the high surface roughness due to partially-melted particles (fabricated in selective laser melting (SLM) process), limits their uses as hip implants. The objective of this study, therefore, is to modify the SLM fabricated Ti6Al4V implant interfaces with 2-Methacryloyloxyethyl phosphorylcholine (MPC) polymer, in the hope of enhancing surface properties and preventing the attachment of the cell simultaneously without affecting the mechanical properties significantly. Three different monomer concentrations were examined to determine the influence of monomer concentrations on polymerisation rate, chain length, and surface properties of the implants.

View Article and Find Full Text PDF

A significant number of hip replacements (HR) fail permanently despite the success of the medical procedure, due to wear and progressive loss of osseointegration of implants. An ideal model should consist of materials with a high resistance to wear and with good biocompatibility. This study aims to develop a new method of grafting the surface of selective laser melted (SLM) titanium alloy (Ti-6Al-4V) with poly (2-methacryloyloxyethyl phosphorylcholine) (PMPC), to improve the surface properties and biocompatibility of the implant.

View Article and Find Full Text PDF

Introduction: Prehabilitation interventions have shown efficacy in the orthopaedic and cardiothoracic surgical populations, but there has been limited evidence for general surgical patients. We present the protocol for a pilot trial of a novel prehabilitation intervention, consisting of a physiatrist-directed preoperative assessment and treatment programme.

Methods And Analysis: This is a single-centre pilot randomised controlled trial investigating physiatrist-directed prehabilitation for a 4 to 6-week preoperative period.

View Article and Find Full Text PDF