Publications by authors named "Shermaine Thein"

Objective: The satiating effect of protein compared with other nutrients has been well described and is thought to be mediated, in part, by gut hormone release. Previously, it has been shown that oral L-arginine acts as a GLP-1 secretagogue both in vitro and in vivo in rodents. Here, the effect of L-arginine on gut hormone release in humans was investigated.

View Article and Find Full Text PDF

Extensive actin cytoskeleton remodelling occurs during adipocyte development. We have previously shown that disruption of stress fibres by the actin-severing protein cofilin is a requisite step in adipogenesis. However, it remains unclear whether actin nucleation and assembly into the cortical structure are essential for adipocyte development.

View Article and Find Full Text PDF

Seipin regulates lipid homeostasis by preventing lipid droplet (LD) formation in non-adipocytes but promoting it in developing adipocytes. Here, we report that seipin interacts with 14-3-3β through its N- and C-termini. Expression of 14-3-3β is upregulated during adipogenesis, and its deletion results in defective adipogenesis without affecting key adipogenic transcription factors.

View Article and Find Full Text PDF

Homozygous mutations in BSCL2 (Berardinelli-Seip congenital lipodystrophy)/seipin cause CGL2 (congenital generalized lipodystrophy type 2). Recent data suggest that seipin regulates LD (lipid droplet) dynamics and adipocyte differentiation, but whether these roles are mechanistically linked remains unclear. To understand how seipin regulates these processes, we investigated the evolutionary changes of seipin orthologues, and studied individual domains in regulating lipid accumulation in non-adipocytes and adipocytes.

View Article and Find Full Text PDF

Cytoskeleton remodelling is a prerequisite step for the morphological transition from preadipocytes to mature adipocytes. Although microtubules play a pivotal role in organizing cellular structure, regulation of microtubule dynamics during adipogenesis remains unclear. In the present paper we show that acetylation of α-tubulin is up-regulated during adipogenesis, and adipocyte development is dependent on α-tubulin acetylation, as expression of an acetylation-resistant α-tubulin mutant significantly inhibits adipogenesis.

View Article and Find Full Text PDF