Nanoparticle modification demonstrates a remarkable synergetic effect in combating bacteria, particularly resistant bacteria, enhancing their efficacy by simultaneously targeting multiple cellular pathways. This approach positions them as a potent solution against the growing challenge of antimicrobial-resistant (AMR) strains. This research presents an investigation into the synthesis, characterization, and antibacterial evaluation of silver-coordinated chloro-fullerenes nanoparticles (Ag-C-Cl) and copper-coordinated chloro-fullerenes nanoparticles (Cu-C-Cl).
View Article and Find Full Text PDFOrganophosphate pesticides (OPPs) are widely prevalent in the environment primarily due to their low cost and extensive use in agricultural lands. However, it is estimated that only about 5% of these applied pesticides reach their intended target organisms. The remaining 95% residue linger in the environment as contaminants, posing significant ecological and health risks.
View Article and Find Full Text PDFIntroduction: Doxorubicin (DOX) emerges as a cornerstone in the arsenal of potent chemotherapeutic agents. Yet, the clinical deployment of DOX is tarnished by its proclivity to induce severe cardiotoxic effects, culminating in heart failure and other consequential morbidities. In response, a panoply of strategies has undergone rigorous exploration over recent decades, all aimed at attenuating DOX's cardiotoxic impact.
View Article and Find Full Text PDFEmerging materials integrated into high performance flexible electronics to detect environmental contaminants have received extensive attention worldwide. The accurate detection of widespread organophosphorus (OP) compounds in the environment is crucial due to their high toxicity even at low concentrations, which leads to acute health concerns. Therefore, developing rapid, highly sensitive, reliable, and facile analytical sensing techniques is necessary to monitor environmental, ecological, and food safety risks.
View Article and Find Full Text PDFControlling the nucleation and growth processes for nanoparticle synthesis allows the development of well-defined structures that offer unique chemical and physical properties. Here, we report a wet chemical reduction method for synthesizing ruthenium nanocubes (Ru NCs) that display plasmonic properties at room temperature (RT). The growth of the particles to form nanostructured cubes was established by varying the carbon chain length of the thioether stabilizing ligands and the reaction time to produce stable and controlled growth.
View Article and Find Full Text PDFConspectusPer- and polyfluoroalkyl substances (PFAS) stand for thousands of fully/highly fluorinated aliphatic chemicals, which have been widely manufactured and used in consumer products. Due to easy deprotonation of headgroups and high strength of C-F bonds in their molecules, PFAS are water-soluble and extremely stable in our environment. Significant accumulation of PFAS in water bodies started as early as the beginning of their production in the late 1940s.
View Article and Find Full Text PDFOrganophosphorus pesticides are widely used in industrial agriculture and have been associated with water pollution and negative impacts on local ecosystems and communities. There is a need for testing technologies to detect the presence of pesticide residues in water sources, especially in developing countries where access to standard laboratory methods is cost prohibitive. Herein, we outline the development of a facile electrochemical sensor for amperometric determination of organophosphorus pesticides in environmental water samples.
View Article and Find Full Text PDFAntibiotic resistance is a formidable global threat. Wastewater is a contributing factor to the prevalence of antibiotic-resistant bacteria and genes in the environment. There is increased interest evident from research trends in exploring nanoparticles for the remediation of antibiotic-resistant bacteria.
View Article and Find Full Text PDFA hexaazatriphenylene (HAT) derivative, naphtho[2,3-h]naphtho[2',3':7,8]quinoxalino[2,3-]naphtho[2',3':7,8]quinoxalino[2,3-]phenazine-5,10,15,20,25,30-hexaone (NQH) was synthesized, characterized, and found to have novel properties in being selective toward the detection of copper (Cu) ions. The capability of NQH to be employed as a colorimetric, chemo-fluorescence and electrochemical sensor for the detection of Cu was demonstrated by performing UV-Vis absorbance, fluorescence intensity, and cyclic voltammetry (CV) measurements. The interaction between NQH and Cu was initially observed with an obvious color change from yellow to brown upon the addition of Cu ions to NQH.
View Article and Find Full Text PDFA novel and flexible oxygen sensing patch was successfully developed for wearable, industrial, food packaging, pharmaceutical and biomedical applications using a cost-efficient and rapid prototypable additive inkjet print manufacturing process. An oxygen sensitive ink was formulated by dissolving ruthenium dye and ethyl cellulose polymer in ethanol in a 1 : 1 : 98 (w/w/w) ratio. The patch was fabricated by depositing the oxygen sensitive ink on a flexible parchment paper substrate using an inkjet printing process.
View Article and Find Full Text PDFPlasmonic nanoparticles offer attractive benefits for the detection of environmental contaminants due to their high extinction coefficients and unique optical properties. Excess use of OP pesticides has been found to have adverse effects on human health and the environment. Here, we demonstrate the use of plasmonic silver (Ag), gold (Au) and bimetallic silver-gold (Ag-Au) nanoparticles (NPs) to detect and distinguish between organophosphorus (OP) pesticides.
View Article and Find Full Text PDFA novel functionalized multi-walled carbon nanotube (FMWCNT)/hydroxyethyl cellulose (HEC) composite-based humidity sensor was successfully developed for humidity monitoring applications. FMWCNTs were synthesized by covalently functionalizing multi-walled carbon nanotubes (MWCNTs) in a mixture of sulfuric and nitric acid to enhance their hydrophilicity. The FMWCNTs were characterized using transmission electron microscopy, Raman spectroscopy, Fourier transform infrared spectroscopy and dispersion analysis to verify the presence of functional hydroxyl and carboxyl groups.
View Article and Find Full Text PDFThe impact of emerging contaminants in the presence of active pharmaceutical pollutants plays an important role in the persistence and activity of environmental bacteria. This manuscript focuses on the impact of amoxicillin functionalized iron oxide nanoparticles on bacterial growth, in the presence of dissolved organic carbon (humic acid). The impact of these emerging contaminants individually and collectively on the growth profiles of model gram positive and negative bacteria was tracked for 24 h.
View Article and Find Full Text PDFIn recent years, there has been an increased interest in the design and use of iron oxide materials with nanoscale dimensions for magnetic, catalytic, biomedical, and electronic applications. The increased manufacture and use of iron oxide nanoparticles (IONPs) in consumer products as well as industrial processes is expected to lead to the unintentional release of IONPs into the environment. The impact of IONPs on the environment and on biological species is not well understood but remains a concern due to the increased chemical reactivity of nanoparticles relative to their bulk counterparts.
View Article and Find Full Text PDFInvestigating the interactions between nanoscale materials and microorganisms is crucial to provide a comprehensive, proactive understanding of nanomaterial toxicity and explore the potential for novel applications. It is well known that nanomaterial behavior is governed by the size and composition of the particles, though the effects of small differences in size toward biological cells have not been well investigated. Palladium nanoparticles (Pd NPs) have gained significant interest as catalysts for important carbon-carbon and carbon-heteroatom reactions and are increasingly used in the chemical industry, however, few other applications of Pd NPs have been investigated.
View Article and Find Full Text PDFUsing colloid-based methods to prepare supported catalytic metallic nanoparticles (NPs) often faces the challenge of removing the stabilizer used during synthesis and activating the catalyst without modifying the particles or the support. We explored three surface activation protocols (thermal oxidation at 150 °C, thermal reduction at 350 °C, and argon-protected calcination at 650 °C) to activate ruthenium NPs supported on mesoporous silica (MSU-F), and assessed their effects on the structural and catalytic properties of the catalysts, and their activity by the aqueous phase hydrogenation of pyruvic acid. The NPs were synthesized by polyol reduction using poly-N-vinyl-2-pyrrolidone (PVP) as a stabilizer, and supported on MSU-F by sonication-assisted deposition.
View Article and Find Full Text PDFWe show here that silver nanoparticles (AgNP) were intrinsically antibacterial, whereas gold nanoparticles (AuNP) were antimicrobial only when ampicillin was bound to their surfaces. Both AuNP and AgNP functionalized with ampicillin were effective broad-spectrum bactericides against Gram-negative and Gram-positive bacteria. Most importantly, when AuNP and AgNP were functionalized with ampicillin they became potent bactericidal agents with unique properties that subverted antibiotic resistance mechanisms of multiple-drug-resistant bacteria.
View Article and Find Full Text PDFOrganophosphorus (OP) based pesticides are known powerful inhibitors of cholinesterases, thus the toxicity of this class of compounds causes serious environmental and human health concerns. We report that benzodipyrido[3,2-a:2',3'-c]phenazine (BDPPZ) and 3,6-dimethylbenzodipyrido-[3,2-a:2',3'-c]phenazine (DM-BDPPZ) provide independent fluorescent and electrochemical signal transductions in the presence of the organophosphorus (OP) pesticides; fenthion, malathion and ethion. The presence of the methyl groups at the 3 and 6 positions in DM-BDPPZ was found to significantly influence the sensor performance.
View Article and Find Full Text PDFMany organophosphorus (OP) based compounds are highly toxic and powerful inhibitors of cholinesterases that generate serious environmental and human health concerns. Organothiophosphates with a thiophosphoryl (P=S) functional group constitute a broad class of these widely used pesticides. They are related to the more reactive phosphoryl (P=O) organophosphates, which include very lethal nerve agents and chemical warfare agents, such as, VX, Soman and Sarin.
View Article and Find Full Text PDFReduction rate constants of the chlorinated ethylenes cis-1,2-dichloroethylene (cis-DCE), trichloroethylene (TCE), and tetrachloroethylene (PCE) reacted with flavin mononucleotide hydroquinone (FMNH2) under anoxic conditions were investigated. FMNH2 was produced in methanol solvent by the photoreduction of FMN. In aqueous solution, FMN was not fully reduced to FMNH2 but instead yielded the semiquinone radical FMNH*.
View Article and Find Full Text PDFHemin (iron protoporphyrin IX) has been anchored to approximately 15 nm TiO2 nanocrystallites (anatase) in approximately 8 mum thick mesoporous thin films. Band gap excitation of these materials in methanol or aqueous (pH 4 or 8) solutions leads to the reduction of hemin to heme (FeIII --> FeII) and the production of TiO2(e-), heme/TiO2(e-). The mechanisms and second-order rate constants for the reduction of bromobenzene, chlorobenzene, dichlorobenzene, and trichloroethylene were quantified.
View Article and Find Full Text PDFThe spectroscopic and redox properties of iron(lll) protoporphyrin chloride (hemin) and cobalt(lll) meso-tetra-(4-carboxyphenyl) porphyrin chloride (CoTCP) were quantified in fluid solution and when anchored to mesoporous nanocrystalline TiO2 thin films. Surface binding was well-described by the Langmuir adsorption isotherm model from which adduct formation constants of 10(5) M(-1) and limiting surface coverages of 10(-8) mol/cm2 were abstracted. In acetonitrile and dimethyl sulfoxide electrolytes, TiO2 binding was found to induce a substantial negative shift in the M(III/II) formal reduction potentials.
View Article and Find Full Text PDFJ Environ Sci Health A Tox Hazard Subst Environ Eng
January 2005
Nanostructured materials have opened new avenues in various scientific fields and are providing novel opportunities in environmental science. The increased surface area-to-volume ratio of nanoparticles, quantum size effects, and the ability to tune surface properties through molecular modification make nanostructures ideal for many environmental remediation applications. We describe herein the fabrication of metal and semiconductor nanoparticles for environmental remediation applications, particularly in ground water.
View Article and Find Full Text PDF