Background: Apolipoprotein E ε4 (APOE4) is the strongest genetic risk factor for late-onset Alzheimer's disease (LOAD). A recent case report identified a rare variant in APOE, APOE3-R136S (Christchurch), proposed to confer resistance to autosomal dominant Alzheimer's Disease (AD). However, it remains unclear whether and how this variant exerts its protective effects.
View Article and Find Full Text PDFBackground: Variants in ABCA7, a member of the ABC transporter superfamily, have been associated with increased risk for developing late onset Alzheimer's disease (LOAD).
Methods: CRISPR-Cas9 was used to generate an Abca7 variant in mice, modeling the homologous human ABCA7 variant, and extensive characterization was performed.
Results: Abca7 microglia show differential gene expression profiles upon lipopolysaccharide challenge and increased phagocytic capacity.
Introduction: The BIN1 coding variant rs138047593 (K358R) is linked to Late-Onset Alzheimer's Disease (LOAD) via targeted exome sequencing.
Methods: To elucidate the functional consequences of this rare coding variant on brain amyloidosis and neuroinflammation, we generated BIN1 knock-in mice using CRISPR/Cas9 technology. These mice were subsequently bred with 5xFAD transgenic mice, which serve as a model for Alzheimer's pathology.
Background: The TREM2 R47H variant is one of the strongest genetic risk factors for late-onset Alzheimer's Disease (AD). Unfortunately, many current Trem2 mouse models are associated with cryptic mRNA splicing of the mutant allele that produces a confounding reduction in protein product. To overcome this issue, we developed the Trem2 (Normal Splice Site) mouse model in which the Trem2 allele is expressed at a similar level to the wild-type Trem2 allele without evidence of cryptic splicing products.
View Article and Find Full Text PDF