The utilization of Machine Learning (ML) techniques in the analysis of the mechanical behavior of fiber-reinforced polymers (FRP) has been increasingly applied in composite materials. The ability to achieve high levels of accuracy, coupled with a reduction in computational cost once the ML models are trained, presents a powerful tool for optimization and in-depth analysis of laminated FRP. This review paper aims to provide insight into the emergence of this trend, offer an overview of various ML algorithms and related subtopics, and demonstrate different implementations of ML from recent studies with a specific focus on the design and optimization of FRP composites.
View Article and Find Full Text PDF