Publications by authors named "Sherif Mehanny"

The demand for eco-friendly materials in automotive components has spurred research into natural fibers as sustainable alternatives for brake pads. This study examines the potential of date palm fibers, particularly the palm frond midrib (PFM), in brake pad composites. The effects of epoxy, PFM, and calcium carbonate on the composites' mechanical and tribological properties were analyzed.

View Article and Find Full Text PDF

Chemical processing is among the significant keys to tackle agro-residues utilization field, aiming to obtain value-added materials. Extraction of cellulose nanocrystals (CNCs) is an emerging route to valorize lignocellulosic wastes into high value particles. In this investigation, effect of acidic hydrolysis duration was monitored on size and morphology of obtained crystals; namely: CNCs from Nile roses fibers (NRFs) (Eichhornia crassipes).

View Article and Find Full Text PDF

Background: Electrospinning is an effective method for producing high-quality biopolymer nanofibers, such as cellulose and chitosan. Cellulose nanofibers have excellent mechanical properties and biocompatibility, making them a promising material for tissue engineering. Chitosan nanofibers are biodegradable, biocompatible, and antimicrobial, making them ideal for biomedical applications.

View Article and Find Full Text PDF

Extraction of cellulose nanocrystals (CNCs) from agro-residues has received much attention, not only for their unique properties supporting a wide range of potential applications, but also their limited risk to global climate change. This research was conducted to assess Nile roses () fibers as a natural biomass to extract CNCs through an acid hydrolysis approach. Nile roses fibers (NRFs) were initially subjected to alkaline (pulping) and bleaching pretreatments.

View Article and Find Full Text PDF

Recent developments in the application of lignocellulosic materials for oil spill removal are discussed in this review article. The types of lignocellulosic substrate material and their different chemical and physical modification strategies and basic preparation techniques are presented. The morphological features and the related separation mechanisms of the materials are summarized.

View Article and Find Full Text PDF

The aim of this work is to study the behavior of completely biodegradable starch-based composites containing date palm fibers in the range from 20 to 80 wt%. Hybrid composites containing date palm and flax fibers, 25 wt% each, were also examined. The composites were preheated and then hot pressed at 5 MPa and 160°C for 30 min.

View Article and Find Full Text PDF