Publications by authors named "Sherif El-Safty"

Real-time monitoring and tracking of extreme toxins that penetrate into living cells by using biocompatible, low-cost visual detection via fluorescent monitors are vitally essential to reduce health hazards. Herein, we report a simple engineering design of biocompatible and fluorescent sensors/trackers for real-time monitoring and ultra-trace tracking (up to ppb) of extremely toxic substances (such as arsenic species) in living cells. The biocompatible As(V) sensor (BAS) design is fabricated via successful dressing/decoration process of 2-hydroxy 5-methyl isophthalaldehyde fluorescent receptor into hierarchical organic-inorganic carriers that have micro-hollow geodes, swirled caves and nest-shaped cages, and uniform cubic structures.

View Article and Find Full Text PDF

The extraordinary accumulation of cyanide ions within biological cells is a severe health risk. Detecting and tracking toxic cyanide ions within these cells by simple and ultrasensitive methodologies are of immense curiosity. Here, continuous tracking of ultimate levels of CN-ions in HeLa cells was reported employing biocompatible branching molecular architectures (BMAs).

View Article and Find Full Text PDF

The design of nanostructured materials occupies a privileged position in the development and management of affordable and effective technology in the antibacterial sector. Here, we discuss the antimicrobial properties of three carbonaceous nanoblades and nanodarts materials of graphene oxide (GO), reduced graphene oxide (RGO), and single-wall carbon nanotubes (SWCNTs) that have a mechano-bactericidal effect, and the ability to piercing or slicing bacterial membranes. To demonstrate the significance of size, morphology and composition on the antibacterial activity mechanism, the designed nanomaterials have been characterized.

View Article and Find Full Text PDF

Antifouling (AF) nanocoatings made of polydimethylsiloxane (PDMS) are more cost-efficient and eco-friendly substitutes for the already outlawed tributyltin-based coatings. Here, a catalytic hydrosilation approach was used to construct a design inspired by composite mosquito eyes from non-toxic PDMS nanocomposites filled with graphene oxide (GO) nanosheets decorated with magnetite nanospheres (GO-FeO nanospheres). Various GO-FeO hybrid nanofillers were dispersed into the PDMS resin through a solution casting method to evaluate the structure-property relationship.

View Article and Find Full Text PDF

Bacterial pathogens pose high threat to public health worldwide. Different types of nanomaterials have been synthesized for the rapid detection and elimination of pathogens from environmental samples. However, the selectivity of these materials remains challenging, because target bacterial pathogens commonly exist in complex samples at ultralow concentrations.

View Article and Find Full Text PDF

To date, the production and development of portable analytical devices for environmental and healthcare applications are rapidly growing. Herein, a portable electrochemical sensor for monitoring of noradrenaline (NA) secreted from living cells using mesoporous carbon-based materials was fabricated. The modification of the interdigitated electrode array (IDA) by nitrogen-doped mesoporous carbon spheres (N-doped MCS) and nitrogen-doped carbon hollow trunk-like structure (N-doped CHT) was used to fabricate the NA sensor.

View Article and Find Full Text PDF

Follow up of neuronal disorders, such as Alzheimer's and Parkinson's diseases using simple, sensitive, and selective assays is urgently needed in clinical and research investigation. Here, we designed a sensitive and selective enzymeless electrochemical acetylcholine sensor that can be used in human fluid samples. The designed electrode consisted of a micro spherical construction of Cu-metal decorated by a thin layer of carbon (CuMS@C).

View Article and Find Full Text PDF

This study aimed to develop a highly selective extraction protocol for gold (Au) ions from electronic urban waste (EUW) using simple, low-cost Inorganic-organic mesoporous hybrid segregators. The unique features of mesoporous hybrid segregator architectures are of particular to ensure effective adsorption system in terms of selective and sensitive recovery of Au ions from EUW. The segregator platform featured 3D micrometric, mesocage double-serrated plant-leaf-like γ-AlO sheets with hierarchy surfaces containing tri-modal mesopores interiorly and uniformly arranged toothed edges of ~20-40 and ~15 nm groove width and depth at the exterior surfaces, respectively.

View Article and Find Full Text PDF

On-demand screening, real-time monitoring and rapid diagnosis of ubiquitous diseases, such as diabetes, at early stages are indispensable in personalised treatment. Emerging impacts of nano/microscale materials on optical and portable biosensor strips and devices have become increasingly important in the remarkable development of sensitive visualisation (i.e.

View Article and Find Full Text PDF

An electrochemical sensor-based phosphorus-doped microporous carbon spheroidal structures (P-MCSs) has been designed for selective adrenaline (ADR) signaling in human blood serum. The P-MCS electrode sensor is built with heterogeneous surface alignments including multiple porous sizes with open holes and meso-/macro-grooves, rough surface curvatures, and integral morphology with interconnected and conjugated microspheres. In addition, the P atom-doped graphitic carbon forms highly active centers, increases charge mobility on the electrode surface, creates abundant active centers with facile functionalization, and induces binding to ADR molecules.

View Article and Find Full Text PDF

Here, we study the effect of hierarchical and one-dimensional (1D) metal oxide nanorods (H-NRs) such as γ-AlO, β-MnO, and ZnO as microbial inhibitors on the antimicrobial efficiency in aqueous solution. These microbial inhibitors are fabricated in a diverse range of nanoscale hierarchical morphologies and geometrical shapes that have effective surface exposure, and well-defined 1D orientation. For instance, γ-AlO H-NRs with 20 nm width and ˂0.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers developed a sensitive protocol for detecting norepinephrine (NEP) using a specialized electrode made from sulfur-doped carbon (S-CSN) in human fluids and neuronal models.
  • The S-CSN electrode features a unique spheroidal structure that enhances its ability to selectively signal NEP due to its porous and active surface properties.
  • This new sensor shows excellent sensitivity with a low detection limit and proves effective for use in living cells and human blood samples, making it promising for clinical studies of neurological diseases.
View Article and Find Full Text PDF

Sensory protocols for evaluation of DNA distortion due to exposure to various harmful chemicals and environments in living cells are needed for research and clinical investigations. Here, a design of non-metal sensory (NMS) electrode was built by using boron-doped carbon spherules for detection of DNA nucleobases, namely, guanine (Gu), adenine (Ad), and thymine (Th) in living cells. The key-electrode based nanoscale NMS structures lead to voids with a facile diffusion, and strong binding events of the DNA nucleobases.

View Article and Find Full Text PDF

We report on low-cost fabrication and high-energy density of full-cell lithium-ion battery (LIB) models. Super-hierarchical electrode architectures of LiSiO/TiO@nano-carbon anode (LSO.TO@nano-C) and high-voltage olivine LiMnPO@nano-carbon cathode (LMPO@nano-C) are designed for half- and full-system LIB-CR2032 coin cell models.

View Article and Find Full Text PDF

Because of the environmental and economic casualties of biofouling on maritime navigation, modern studies have been devoted toward formulating advanced nanoscale composites in the controlled development of effective marine antifouling self-cleaning surfaces. Natural biomimetic surfaces have the advantages of micro-/nanoroughness and minimized free energy characteristics that can motivate the dynamic fabrication of superhydrophobic antifouling surfaces. This review provides an architectural panorama of the biomimetic antifouling designs and their key leverages to broaden horizons in the controlled fabrication of nanocomposite building blocks as force-driven marine antifouling models.

View Article and Find Full Text PDF

3D-ridge nanosheets of N-doped mesoporous carbon (NMCS)-based electrodes are fabricated as ultrasensitive biosensors for in vitro monitoring of dopamine (DA) released from living cells. The large-scale ranges of dense-layered sheets are arranged linearly with a thickness of <10 nm, soft tangled edges, stocked layer arrangements, and tunable mesoporous frameworks with 3D orientations. The intrinsic features of the active interfacial surface of the electrode based on NMCS along with polarized surfaces, dense surface-charged matrices, fast electron transfer, and easy molecular diffusion, are present in the highly active electrode for biosensing applications.

View Article and Find Full Text PDF

A metal-free electrode using heteroatom-doped microporous carbon was fabricated for the ultrasensitive monitoring of mono-bioactive molecules and the selective signaling of dopamine (DA) secreted by living cells. The constructed electrode based on sulfur-doped microporous carbon (S-MC) shows a high surface area, a spherical construction, numerous carbon chain defects, and microporous structures, which are the key factors of the interactive signaling transducer, fast response, and active interfacial surfaces. The intrinsic features of S-MC with different %S-doping (S-MC-1, and S-MC-2) through the sp-carbon chain create abundant catalytic active sites, facilitate molecular diffusion through the microporous structure, promote strong binding with the targeted molecules, and induce interactions at electrolyte-electrode interfaces.

View Article and Find Full Text PDF

The controlled design of biosensors based on the photo-electrochemical technique with high selectivity, sensitivity, and rapid response for monitoring of mono-bioactive molecules, particularly dopamine (DA) levels in neuronal cells is highly necessary for clinical diagnosis. Hierarchical carbon-, nitrogen-doped (CN) nickel oxide spear thistle (ST) flowers associated in single-heads (S), and symmetric and asymmetric-double heads (D and A, respectively) that are tightly connected through a micrometric dipole-like rod or trunk were fabricated by using a simple synthetic protocol. The CN-ST flower heads were decorated with dense nano-tubular like hedgehog needle skins in vertical alignments.

View Article and Find Full Text PDF

Monitoring and determination of ultra-trace concentrations of monoamine neurotransmitter such as noradrenaline (NA) in living cells with simple, sensitive and selective assays are significantly interesting. We design NA-electrode sensing system based on C-, N-doped NiO broccoli-like hierarchy (CNNB). The spherical broccoli-head umbrella architectures associated with nano-tubular arrangements enabled to tailor NA biosensor design.

View Article and Find Full Text PDF

The design of cheap and efficient oxygen reduction reaction (ORR) electrocatalysts is of a significant importance in sustainable and renewable energy technologies. Therefore, ORR catalysts with superb electrocatalytic activity and durability are becoming a necessity but still remain challenging. Herein, we report C/NiCo₂O₄ nanocomposite fibers fabricated by a straightforward electrospinning technique followed by a simple sintering process as a promising ORR electrocatalyst in alkaline condition.

View Article and Find Full Text PDF

This work describes densely interlinked bushy "tree-like chains" characterized by neatly branched sphere dendrites (bushy sphere dendrites, BSD) with long fan-like, husk-shaped branching paths that extend longitudinally from the core axis of the {110}-exposed plane. We confirmed that the hierarchical dendrite surfaces created bowls of swirled caves along the tree-tube in the mat-like branches. These surfaces had high-index catalytic site facets associated with the formation of ridges/defects on the dominant {110}-top-cover surface.

View Article and Find Full Text PDF

Because of the devastating impact of arsenic on terrestrial and aquatic organisms, the recovery, removal, disposal, and management of arsenic-contaminated water is a considerable challenge and has become an urgent necessity in the field of water treatment. This study reports the controlled fabrication of a low-cost adsorbent based on microscopic C-,N-doped NiO hollow spheres with geode shells composed of poly-CN nanospherical nodules (100 nm) that were intrinsically stacked and wrapped around the hollow spheres to form a shell with a thickness of 500-700 nm. This C-,N-doped NiO hollow-sphere adsorbent (termed CNN) with multiple diffusion routes through open pores and caves with connected open macro/meso windows over the entire surface and well-dispersed hollow-sphere particles that create vesicle traps for the capture, extraction, and separation of arsenate (AsO ) species from aqueous solution.

View Article and Find Full Text PDF

Trimethylated-β-cyclodextrin (TM-β-CD) was encapsulated within several polymer monolithic capillary columns for reversed-phase chiral nano-liquid chromatography (nano-LC). The monolithic phases were prepared using the one-pot in situ copolymerization of ethylene glycol dimethacrylate (EDMA), glycidyl methacrylate (GMA) monomers and 1-propanol, 1,4-butanediol as progenic solvents in presence of TM-β-CD solution within fused silica capillaries (150µm I.D.

View Article and Find Full Text PDF

The data presented in this article are related to the research article entitled "Smart photo-induced silicone/TiO2 nanocomposites with dominant [110] exposed surfaces for self-cleaning foul-release coatings of ship hulls" (Selimet al., 2016) [1]. This article reports on successfully designing and controlling TiO2 spherical single crystal photo-nanofillers and indicating evidence of fouling resistance after stimulation through UV radiation exposure.

View Article and Find Full Text PDF

Background: The present work involved the synthesis and characterisation of mesoporous alumina sphere (MAS) nanoparticles to evaluate their biological activity against tomato root rot caused by Fusarium oxysporium, as compared with the recommended fungicide, tolclofos-methyl, under laboratory and greenhouse conditions. The effects of MAS nanoparticles on the growth of tomato plants were also evaluated and compared with those of tolclofos-methyl.

Results: The physical characteristics and structural features of MAS nanoparticles, such as their large surface-area-to-volume ratio, active surface sites and open channel pores, caused high antifungal efficacy against F.

View Article and Find Full Text PDF