Publications by authors named "Sheri Nolan"

Multidrug-resistant bacterial infections pose an ever-evolving threat to public health. Since the outset of the antibacterial age, bacteria have developed a multitude of diverse resistance mechanisms that suppress the effectiveness of current therapies. New drug entities, such as Novel Bacterial Topoisomerase Inhibitors (NBTIs), can circumvent this major issue.

View Article and Find Full Text PDF

Antibacterial resistance continues its devastation of available therapies. Novel bacterial topoisomerase inhibitors (NBTIs) offer one solution to this critical issue. Two series of amine NBTIs bearing tricyclic DNA-binding moieties as well as amide NBTIs with a bicyclic DNA-binding moiety were synthesized and evaluated against methicillin-resistant (MRSA).

View Article and Find Full Text PDF

Novel bacterial topoisomerase inhibitors (NBTIs) are among the most promising new antibiotics in preclinical/clinical development. We previously reported dioxane-linked NBTIs with potent antistaphylococcal activity and reduced hERG inhibition, a key safety liability. Herein, polarity-focused optimization enabled the delineation of clear structure-property relationships for both microsomal metabolic stability and hERG inhibition, resulting in the identification of lead compound .

View Article and Find Full Text PDF

In recent years, novel bacterial topoisomerase inhibitors (NBTIs) have been developed as future antibacterials for treating multidrug-resistant bacterial infections. A series of dioxane-linked NBTIs with an amide moiety has been synthesized and evaluated. Compound inhibits DNA gyrase, induces the formation of single strand breaks to bacterial DNA, and achieves potent antibacterial activity against a variety of Gram-positive pathogens, including methicillin-resistant (MRSA).

View Article and Find Full Text PDF

The development of new therapies to treat methicillin-resistant (MRSA) is needed to counteract the significant threat that MRSA presents to human health. Novel inhibitors of DNA gyrase and topoisomerase IV (TopoIV) constitute one highly promising approach, but continued optimization is required to realize the full potential of this class of antibiotics. Herein, we report further studies on a series of dioxane-linked derivatives, demonstrating improved antistaphylococcal activity and reduced hERG inhibition.

View Article and Find Full Text PDF