The oncogenic Epstein-Barr virus (EBV) can drive tumorigenesis with disrupted host immunity, causing malignancies including post-transplant lymphoproliferative disorders (PTLDs). PTLD can also arise in the absence of EBV, but the biological differences underlying EBV(+) and EBV(-) B cell PTLD and the associated host-EBV-tumor interactions remain poorly understood. Here, we reveal the core differences between EBV(+) and EBV(-) PTLD, characterized by increased expression of genes related to immune processes or DNA interactions, respectively, and the augmented ability of EBV(+) PTLD B cells to modulate the tumor microenvironment through elaboration of monocyte-attracting cytokines/chemokines.
View Article and Find Full Text PDFHeart transplantation, a crucial intervention for saving lives of those with end-stage cardiac failure, often faces complications from acute allograft rejection. This study focuses on the intricate dynamics of immune cell interactions and specific communication pathways between organs, which are not yet well understood. Our study investigates this interplay using a murine heterotopic transplant model, using single-cell RNA sequencing to examine CD45 immune cells from both the heart grafts and spleens.
View Article and Find Full Text PDFBackground: Epstein-Barr virus (EBV)-associated post-transplant lymphoproliferative disorders (PTLD) is the most common malignancy in children after transplant; however, difficulties for early detection may worsen the prognosis.
Methods: The prospective, multicenter, study enrolled 944 children (≤21 years of age). Of these, 872 received liver, heart, kidney, intestinal, or multivisceral transplants in seven US centers between 2014 and 2019 (NCT02182986).
Transplantation serves as the cornerstone of treatment for patients with end-stage organ disease. The prevalence of complications, such as allograft rejection, infection, and malignancies, underscores the need to dissect the complex interactions of the immune system at the single-cell level. In this review, we discuss studies using mass cytometry or cytometry by time-of-flight, a cutting-edge technology enabling the characterization of immune populations and cell-to-cell interactions in granular detail.
View Article and Find Full Text PDFThe 12th Congress of the (IPTA) event in Austin, Texas, had over 400 attendees from 40 countries. The attendees included a diverse mix of pediatric transplant professionals from several specialties including physicians, surgeons, scientists, nurses, organ procurement personnel, advance transplant providers, pharmacists, administrators, fellows, residents, and students. The 4-day event featured nearly 200 abstracts, 90 oral presentations, 24 mini oral presentations, and more than 80 poster presentations.
View Article and Find Full Text PDFSolid organ transplant remains a life-saving therapy for children with end-stage heart, lung, liver, or kidney disease; however, ∼33% of allograft recipients experience acute rejection within the first year after transplant. Our ability to detect early rejection is hampered by an incomplete understanding of the immune changes associated with allograft health, particularly in the pediatric population. We performed detailed, multilineage, single-cell analysis of the peripheral blood immune composition in pediatric solid organ transplant recipients, with high-dimensional mass cytometry.
View Article and Find Full Text PDFEpstein-Barr virus (EBV)-positive posttransplant lymphoproliferative disorder (PTLD) results in significant morbidity and mortality in pediatric transplant recipients. Identifying individuals at an increased risk of EBV-positive PTLD could influence clinical management of immunosuppression and other therapies, improving posttransplant outcomes. A 7-center prospective, observational clinical trial of 872 pediatric transplant recipients evaluated the presence of mutations at positions 212 and 366 of EBV latent membrane protein 1 (LMP1) as an indicator of risk of EBV-positive PTLD (clinical trials: NCT02182986).
View Article and Find Full Text PDFRegulatory B cells (Bregs) suppress immune responses through the secretion of interleukin-10 (IL-10). This immunomodulatory capacity holds therapeutic potential, yet a definitional immunophenotype for enumeration and prospective isolation of B cells capable of IL-10 production remains elusive. Here, we simultaneously quantify cytokine production and immunophenotype in human peripheral B cells across a range of stimulatory conditions and time points using mass cytometry.
View Article and Find Full Text PDFAlloimmune responses in acute rejection are complex, involving multiple interacting cell types and pathways. Deep profiling of these cell types has been limited by technology that lacks the capacity to resolve this high dimensionality. Single-cell mass cytometry is used to characterize the alloimmune response in early acute rejection, measuring 37 parameters simultaneously, across multiple time points in two models: a murine cardiac and vascularized composite allotransplant (VCA).
View Article and Find Full Text PDFBackground: The mouse is the most widely used animal for establishing in vivo models in transplant research. However, because of the advanced microsurgical skills required for these operations, the vascularized composite transplantation model in mouse has proven to be technically challenging. The purpose of this report is to describe novel modifications in surgical techniques to establish a consistent and reliable mouse model of hind limb transplantation.
View Article and Find Full Text PDFA coat of pericellular hyaluronan surrounds mature dendritic cells (DC) and contributes to cell-cell interactions. We asked whether 4-methylumbelliferone (4MU), an oral inhibitor of HA synthesis, could inhibit antigen presentation. We find that 4MU treatment reduces pericellular hyaluronan, destabilizes interactions between DC and T-cells, and prevents T-cell proliferation in vitro and in vivo.
View Article and Find Full Text PDFNatural killer (NK) cells control viral infection through the interaction between inhibitory receptors and human leukocyte antigen (HLA) ligands and bound peptide. NK cells expressing the inhibitory receptor NKG2A/CD94 recognize and respond to autologous B cells latently infected with Epstein-Barr virus (EBV). The mechanism is not yet understood, thus we investigated peptides derived from seven latent proteins of EBV in the interaction of NKG2A and its ligand HLA-E.
View Article and Find Full Text PDFEpstein-Barr Virus (EBV) is a ubiquitous virus linked to a variety of lymphoid and epithelial malignancies. In solid organ and hematopoietic stem cell transplant recipients, EBV is causally associated with posttransplant lymphoproliferative disorder (PTLD), a group of heterogeneous lymphoid diseases. EBV+ B cell lymphomas that develop in the context of PTLD are generally attributed to the immunosuppression required to promote graft survival, but little is known regarding the role of EBV genome diversity in the development of malignancy.
View Article and Find Full Text PDFEpstein-Barr Virus (EBV) is associated with potentially fatal lymphoproliferations such as post-transplant lymphoproliferative disorder (PTLD), a serious complication of transplantation. The viral mechanisms underlying the development and maintenance of EBV+ B cell lymphomas remain elusive but represent attractive therapeutic targets. EBV modulates the expression of host microRNAs (miRs), non-coding RNAs that regulate gene expression, to promote survival of EBV+ B cell lymphomas.
View Article and Find Full Text PDFPosttransplant lymphoproliferative disorder (PTLD) is a serious complication of organ transplantation that often manifests as Epstein-Barr virus (EBV)-associated B cell lymphomas. Current treatments for PTLD have limited efficacy and can be associated with graft rejection or systemic toxicities. The mTOR inhibitor, rapamycin, suppresses tumor growth of EBV+ B cell lymphoma cells in vitro and in vivo; however, the efficacy is limited and clinical benefits of mTOR inhibitors for PTLD are variable.
View Article and Find Full Text PDFStem cell-based approaches have the potential to address the organ shortage in transplantation. Whereas both embryonic stem cells and induced pluripotent stem cells have been utilized as cellular sources for differentiation and lineage specification, their relative ability to be recognized by immune effector cells is unclear. We determined the expression of immune recognition molecules on hepatocyte-like cells (HLC) generated from murine embryonic stem cells and induced pluripotent stem cells, compared to adult hepatocytes, and we evaluated the impact on recognition by natural killer (NK) cells.
View Article and Find Full Text PDFCurr Opin Organ Transplant
February 2019
Purpose Of Review: Natural killer (NK) cells are effector cells of the innate immune system that can lyse target cells without prior sensitization and are important in host defense to virally infected and transformed cells. Although the concept of 'missing-self' would suggest NK cells could target foreign allografts, the prevailing dogma has been that NK cells are not active participants in the rejection of solid organ allografts. This review summarizes recent studies that challenge this conclusion and instead suggest NK cells are important in outcomes posttransplant.
View Article and Find Full Text PDFEpstein-Barr virus (EBV) is the etiological agent of acute infectious mononucleosis (IM). Since acute IM is a self-resolving disease with most patients regaining health in 1-3 weeks there have been few studies examining molecular signatures in early acute stages of the disease. MicroRNAs (miRNAs) have been shown, however, to influence immune cell function and consequently the generation of antibody responses in IM.
View Article and Find Full Text PDFPurpose Of Review: Micro-RNAs (miRNAs) are highly conserved small RNA molecules that have selective gene-regulatory functions. This posttranscriptional regulation by miRNAs is critical for many immunological processes. Many developments in establishing the biological role of miRNAs in solid organ transplantation have been generated in the last decade.
View Article and Find Full Text PDFT cell receptor (TCR) sequences are very diverse, with many more possible sequence combinations than T cells in any one individual. Here we define the minimal requirements for TCR antigen specificity, through an analysis of TCR sequences using a panel of peptide and major histocompatibility complex (pMHC)-tetramer-sorted cells and structural data. From this analysis we developed an algorithm that we term GLIPH (grouping of lymphocyte interactions by paratope hotspots) to cluster TCRs with a high probability of sharing specificity owing to both conserved motifs and global similarity of complementarity-determining region 3 (CDR3) sequences.
View Article and Find Full Text PDFPosttransplant lymphoproliferative disorder (PTLD) is a serious complication in organ transplant recipients and is most often associated with the Epstein Barr virus (EBV). EBV is a common gammaherpes virus with tropism for B lymphocytes and infection in immunocompetent individuals is typically asymptomatic and benign. However, infection in immunocompromised or immunosuppressed individuals can result in malignant B cell lymphoproliferations, such as PTLD.
View Article and Find Full Text PDFEpstein-Barr virus (EBV) is a human γ-herpesvirus that establishes latency and lifelong infection in host B cells while achieving a balance with the host immune response. When the immune system is perturbed through immunosuppression or immunodeficiency, however, these latently infected B cells can give rise to aggressive B cell lymphomas. Natural killer (NK) cells are regarded as critical in the early immune response to viral infection, but their role in controlling expansion of infected B cells is not understood.
View Article and Find Full Text PDFBackground: MicroRNAs (miRNAs) are small noncoding RNA molecules that regulate the posttranscriptional expression of target genes and are important regulators in immune responses. Previous studies demonstrated that the miRNA, miR-182 was significantly increased during allograft rejection. Further, the transcription factor Forkhead box (FOX) protein 1, (FOXO1) was shown to be a target of miR-182.
View Article and Find Full Text PDF