Publications by authors named "Sherelle L Casey"

(1) Background: The psychoactive and non-psychoactive constituents of cannabis, Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), synergistically reduce allodynia in various animal models of neuropathic pain. Unfortunately, THC-containing drugs also produce substantial side-effects when administered systemically. We examined the effectiveness of targeted spinal delivery of these cannabis constituents, alone and in combination.

View Article and Find Full Text PDF

The psychoactive and non-psychoactive constituents of cannabis, Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), have synergistic analgesic efficacy in animal models of neuropathic pain when injected systemically. However, the relevance of this preclinical synergy to clinical neuropathic pain studies is unclear because many of the latter use oral administration. We therefore examined the oral effectiveness of these phytocannabinoids and their interactions in a mouse chronic constriction injury (CCI) model of neuropathic pain.

View Article and Find Full Text PDF

Clinical studies have shown that the major psychoactive ingredient of Cannabis sativa Δ9-tetrahydrocannabinol (THC) has some analgesic efficacy in neuropathic pain states. However, THC has a significant side effect profile. We examined whether the profile of THC could be improved by co-administering it with the first-line neuropathic pain medication gabapentin.

View Article and Find Full Text PDF

Chronic neuropathic pain is a prevalent condition that places a heavy burden on individuals and the healthcare system. Current medications have limitations and new approaches are needed, particularly given the current opioid crisis. There is some clinical evidence that the plant produces relief from neuropathic pain.

View Article and Find Full Text PDF

Cannabis and its psychoactive constituent Δ9-tetrahydrocannabinol (THC) have efficacy against neuropathic pain, however, this is hampered by their side effects. It has been suggested that co-administration with another major constituent cannabidiol (CBD) might enhance the analgesic actions of THC and minimise its deleterious side effects. We examined the basis for this phytocannabinoid interaction in a mouse chronic constriction injury (CCI) model of neuropathic pain.

View Article and Find Full Text PDF

Background And Purpose: Clinical studies have reported that pan-cannabinoid receptor agonists may have efficacy in neuropathic pain states and that this might be enhanced by co-administration with opioids. While cannabinoid-opioid analgesic synergy has been demonstrated in animal models of acute pain, it has not been examined in neuropathic pain models. We examined the effect of combination treatment with cannabinoid and opioid receptor agonists on allodynia and side effects in a nerve injury-induced neuropathic pain model.

View Article and Find Full Text PDF