As one of the most common female cancers, cervical cancer often develops years after a prolonged and reversible pre-cancerous stage. Traditional classification algorithms used for detection of cervical cancer often require cell segmentation and feature extraction techniques, while convolutional neural network (CNN) models demand a large dataset to mitigate over-fitting and poor generalization problems. To this end, this study aims to develop deep learning models for automated cervical cancer detection that do not rely on segmentation methods or custom features.
View Article and Find Full Text PDF