Publications by authors named "Shephali Gandhi"

Transepithelial Na(+) transport through epithelial Na(+) channels (ENaC) on the apical membrane and Na(+)-K(+)-ATPase activity on the basolateral membrane of distal lung epithelial cells are critical for alveolar fluid clearance. Acute exposure to beta-adrenergic agonists stimulates lung fluid clearance by increasing Na(+) transport. We investigated the effects of chronic exposure to the beta(2)-adrenergic agonist terbutaline on the transepithelial Na(+) transport in rat fetal distal lung epithelia (FDLE).

View Article and Find Full Text PDF

REDD1 (Regulated in Development and DNA Damage-1) is a stress-response gene that represses mammalian target of rapamycin (mTOR) thus decreasing protein synthesis. In contrast to studies using cell lines and adult alveolar type II (ATII) cells, we find that REDD1 mRNA levels did not increase in rat fetal distal lung epithelia (FDLE) or fetal lung fibroblasts grown in primary cultures and then exposed to 3% O2. REDD1 mRNA expression was repressed by dexamethasone (DEX) in FDLE and ATII, but induced by DEX in fibroblasts.

View Article and Find Full Text PDF

The neuroendocrine system is most active at birth and may play a role in the transition from fetal to postnatal life, in particular in the lungs' transition from fluid secretion to fluid absorption. Pulmonary neuroendocrine cells do release dopamine (DA), serotonin, and gastrin-releasing peptide but their effects on lung ion and fluid transport are poorly understood. Therefore, we studied their effects on fetal distal lung explants and primary cultures of fetal distal lung epithelium (FDLE).

View Article and Find Full Text PDF

The ability of the distal lung epithelia to actively transport Na+, with Cl- and water following, from the alveolar spaces inversely correlates with morbidity and mortality of infants, children, and adults with alveolar pulmonary edema. It is now recognized, in contrast to many other Na+ transporting epithelia, that at least half of this active transport is not sensitive to amiloride, which inhibits the epithelial Na+ channel. This paper reviews amiloride-insensitive Na+ and fluid transport in the mammalian distal lung unit under basal conditions and speculates on potential explanations for this amiloride-insensitive transport.

View Article and Find Full Text PDF

We have previously shown that cardiogenic pulmonary edema fluid (EF) increases Na(+) and fluid transport by fetal distal lung epithelia (FDLE) (Rafii B, Gillie DJ, Sulowski C, Hannam V, Cheung T, Otulakowski G, Barker PM and O'Brodovich H. J Physiol 544: 537-548, 2002). We now report the effect of EF on Na(+) and fluid transport by the adult lung.

View Article and Find Full Text PDF

Fetal distal lung epithelium (FDLE) must increase amiloride-sensitive epithelial Na(+) channel (ENaC) activity during the perinatal period to increase Na(+) transport and fluid clearance. Glucocorticosteroid (GC) levels increase, there is a 7-fold increase in Po(2) at birth, and we have previously shown that dexamethasone (DEX)-induced alpha-ENaC mRNA is efficiently translated only under postnatal (21%) O(2) (Otulakowski et al., AJRCMB 2006;34:204-212).

View Article and Find Full Text PDF

Caveolin-1 and CD36 are plasma membrane fatty acid binding proteins that participate in adipocyte fatty acid uptake and metabolism. Both are associated with cholesterol-enriched caveolae/lipid rafts in the plasma membrane that are important for long chain fatty acid uptake. Depletion of plasma membrane cholesterol reversibly inhibited oleate uptake by adipocytes without altering the amount or the cell surface distribution of either caveolin-1 or CD36.

View Article and Find Full Text PDF