Recent studies have demonstrated that the mechanisms through which biopolymers like RNA interconvert between multiple folded structures are critical for their cellular functions. A major obstacle to elucidating these mechanisms is the lack of experimental approaches that can resolve these interconversions between functionally relevant biomolecular structures. Here, we dissect the complete set of structural rearrangements executed by an ultra-stable RNA, the UUCG stem-loop, at the single-molecule level using a nano-electronic device with microsecond time resolution.
View Article and Find Full Text PDFDiscrete amplitude levels in ordered, time-domain data often represent different underlying latent states of the system that is being interrogated. Analysis and feature extraction from these data sets generally require considering the order of each individual point; this approach cannot take advantage of contemporary general-purpose graphics processing units (gpGPU) and single-instruction multiple-data (SIMD) instruction set architectures. Two sources of such data from single-molecule biological measurements are nanopores and single-molecule field effect transistor (smFET) nanotube devices; both generate streams of time-ordered current or voltage data, typically sampled near 1 MS/s, with run times of minutes, yielding terabyte-scale datasets.
View Article and Find Full Text PDFDue to their effective ionic-to-electronic signal conversion and mechanical flexibility, organic neural implants hold considerable promise for biocompatible neural interfaces. Current approaches are, however, primarily limited to passive electrodes due to a lack of circuit components to realize complex active circuits at the front-end. Here, we introduce a p-n organic electrochemical diode using complementary p- and n-type conducting polymer films embedded in a 15-μm -diameter vertical stack.
View Article and Find Full Text PDF2023 IEEE Symp VLSI Technol Circuits (2023)
June 2023
This paper presents a fully wireless microelectrode array (MEA) system-on-chip (SoC) with 65,536 electrodes for non-penetrative cortical recording and stimulation, featuring a total sensing area of 6.8mm×7.4mm with a 26.
View Article and Find Full Text PDFDirect deposition of organic light-emitting diodes (OLEDs) on silicon-based complementary metal-oxide-semiconductor (CMOS) chips has enabled self-emissive microdisplays with high resolution and fill-factor. Emerging applications of OLEDs in augmented and virtual reality (AR/VR) displays and in biomedical applications, e.g.
View Article and Find Full Text PDFCoronavirus disease (COVID-19) is a contagious respiratory disease caused by the SARS-CoV-2 virus. The clinical phenotypes are variable, ranging from spontaneous recovery to serious illness and death. On March 2020, a global COVID-19 pandemic was declared by the World Health Organization (WHO).
View Article and Find Full Text PDFScanning ion conductance microscopy (SICM) is a topographic imaging technique capable of probing biological samples in electrolyte conditions. SICM enhancements have enabled surface charge detection based on voltage-dependent signals. Here, we show how the hopping mode SICM method (HP-SICM) can be used for rapid and minimally invasive surface charge mapping.
View Article and Find Full Text PDFCarrier-free spray-dried dispersions for pulmonary delivery, for which the demand is growing, frequently require the incorporation of dispersibility-enhancing excipients into the formulations to improve the efficacy of the dosage form. One of the most promising of such excipients, L-leucine, is expected to be approved for inhalation soon and has been studied exhaustively. However, during stability, small fibers protruding from the particles of leucine-containing powders have occasionally been observed.
View Article and Find Full Text PDFOptical neurotechnologies use light to interface with neurons and can monitor and manipulate neural activity with high spatial-temporal precision over large cortical extents. While there has been significant progress in miniaturizing microscope for head-mounted configurations, these existing devices are still very bulky and could never be fully implanted. Any viable translation of these technologies to human use will require a much more noninvasive, fully implantable form factor.
View Article and Find Full Text PDFWe have developed and used single-molecule field-effect transistors (smFETs) to characterize the conformational free-energy landscape of RNA stem-loops. Stem-loops are one of the most common RNA structural motifs and serve as building blocks for the formation of complex RNA structures. Given their prevalence and integral role in RNA folding, the kinetics of stem-loop (un)folding has been extensively characterized using both experimental and computational approaches.
View Article and Find Full Text PDFBlack cohosh (BC; Actaea racemosa L.), a top-selling botanical dietary supplement, is marketed to women primarily to ameliorate a variety of gynecological symptoms. Due to widespread usage, limited safety information, and sporadic reports of hepatotoxicity, the Division of the National Toxicology Program (DNTP) initially evaluated BC extract in female rats and mice.
View Article and Find Full Text PDFMost neuromodulation approaches rely on extracellular electrical stimulation with penetrating electrodes at the cost of cortical damage. Surface electrodes, in contrast, are much less invasive but are challenged by the lack of proximity to axonal processes, leading to poor resolution. Here, we demonstrate that high-density (40-μm pitch), high-capacitance (>1 nF), single neuronal resolution PEDOT:PSS electrodes can be programmed to shape the charge injection front selectively at depths approaching 300 micrometers with a lateral resolution better than 100 micrometers.
View Article and Find Full Text PDFUltrasound imaging provides the means for non-invasive real-time diagnostics of the internal structure of soft tissue in living organisms. However, the majority of commercially available ultrasonic transducers have rigid interfaces which cannot conform to highly-curved surfaces. These geometric limitations can introduce a signal-quenching air gap for certain topographies, rendering accurate imaging difficult or impractical.
View Article and Find Full Text PDFSpray drying is a particle engineering technique used to manufacture respirable pharmaceutical powders that are suitable for delivery to the deep lung. It is amenable to processing both small molecules and biologic actives, including proteins. In this work, a simultaneous spray-drying process, termed simul-spray, is described; the process involves two different active pharmaceutical ingredient (API) solutions that are simultaneously atomized through separate nozzles into a single-spray dryer.
View Article and Find Full Text PDFModern clinical practice benefits significantly from imaging technologies and much effort is directed toward making this imaging more informative through the addition of contrast agents or reporters. Here, we report the design of a battery-less integrated circuit mote acting as an electronic reporter during medical ultrasound imaging. When implanted within the field-of-view of a brightness-mode (B-mode) ultrasound imager, this mote transmits information from its location through backscattered acoustic energy which is captured within the ultrasound image itself.
View Article and Find Full Text PDFElectronic transport in the regime where carrier-carrier collisions are the dominant scattering mechanism has taken on new relevance with the advent of ultraclean two-dimensional materials. Here, we present a combined theoretical and experimental study of ambipolar hydrodynamic transport in bilayer graphene demonstrating that the conductivity is given by the sum of two Drude-like terms that describe relative motion between electrons and holes, and the collective motion of the electron-hole plasma. As predicted, the measured conductivity of gapless, charge-neutral bilayer graphene is sample- and temperature-independent over a wide range.
View Article and Find Full Text PDFObjectives: Most research investigating staff perceptions of patient safety has been based in primary care or hospitals, with little research on emergency services. Therefore, this study aimed to explore staff perceptions of patient safety in the NHS ambulance services.
Design: A stratified qualitative study using semi-structured interviews.
Implantable image sensors have the potential to revolutionize neuroscience. Due to their small form factor requirements; however, conventional filters and optics cannot be implemented. These limitations obstruct high-resolution imaging of large neural densities.
View Article and Find Full Text PDF