Publications by authors named "Sheona Watson-Scales"

Down syndrome (DS) is caused by trisomy of human chromosome 21 (Hsa21). DS is a gene dosage disorder that results in multiple phenotypes including congenital heart defects. This clinically important cardiac pathology is the result of a third copy of one or more of the approximately 230 genes on Hsa21, but the identity of the causative dosage-sensitive genes and hence mechanisms underlying this cardiac pathology remain unclear.

View Article and Find Full Text PDF

Down syndrome (DS), trisomy of human chromosome 21 (Hsa21), occurs in 1 in 800 live births and is the most common human aneuploidy. DS results in multiple phenotypes, including craniofacial dysmorphology, which is characterised by midfacial hypoplasia, brachycephaly and micrognathia. The genetic and developmental causes of this are poorly understood.

View Article and Find Full Text PDF

Down syndrome (DS) phenotypes result from triplicated genes, but the effects of three copy genes are not well known. A mouse mapping panel genetically dissecting human chromosome 21 (Hsa21) syntenic regions was used to investigate the contributions and interactions of triplicated Hsa21 orthologous genes on mouse chromosome 16 (Mmu16) on skeletal phenotypes. Skeletal structure and mechanical properties were assessed in femurs of male and female Dp9Tyb, Dp2Tyb, Dp3Tyb, Dp4Tyb, Dp5Tyb, Dp6Tyb, Ts1Rhr and Dp1Tyb;Dyrk1a+/+/- mice.

View Article and Find Full Text PDF

Down syndrome (DS), trisomy 21, results in many complex phenotypes including cognitive deficits, heart defects and craniofacial alterations. Phenotypes arise from an extra copy of human chromosome 21 (Hsa21) genes. However, these dosage-sensitive causative genes remain unknown.

View Article and Find Full Text PDF
Article Synopsis
  • Individuals with Down syndrome (DS) show skeletal abnormalities like craniofacial features, short stature, and lower bone mineral density (BMD), with noticeable differences between males and females, indicating sexual dimorphism.
  • Dp1Tyb mice, which have three copies of genes analogous to human chromosome 21, provide a suitable model for studying how gene dosage affects these differences in bone characteristics.
  • Research findings reveal that male and female Dp1Tyb mice exhibit varying skeletal deficits, influenced by their genetic makeup and sex, which can help identify the specific genes responsible for bone abnormalities in DS.
View Article and Find Full Text PDF

Down syndrome (DS), trisomy of human chromosome 21 (Hsa21), results in a broad range of phenotypes. A recent study reported that DS cells show genome-wide transcriptional changes in which up- or down-regulated genes are clustered in gene expression dysregulation domains (GEDDs). GEDDs were also reported in fibroblasts derived from a DS mouse model duplicated for some Hsa21-orthologous genes, indicating cross-species conservation of this phenomenon.

View Article and Find Full Text PDF

Down Syndrome (DS) is caused by trisomy of chromosome 21 (Hsa21) and results in a spectrum of phenotypes including learning and memory deficits, and motor dysfunction. It has been hypothesized that an additional copy of a few Hsa21 dosage-sensitive genes causes these phenotypes, but this has been challenged by observations that aneuploidy can cause phenotypes by the mass action of large numbers of genes, with undetectable contributions from individual sequences. The motor abnormalities in DS are relatively understudied-the identity of causative dosage-sensitive genes and the mechanism underpinning the phenotypes are unknown.

View Article and Find Full Text PDF

Altered concentrations of monoamine neurotransmitters and metabolites have been repeatedly found in people with Down syndrome (DS, trisomy 21). Because of the limited availability of human post-mortem tissue, DS mouse models are of great interest to study these changes and the underlying neurobiological mechanisms. Although previous studies have shown the potential of Ts65Dn mice - the most widely used mouse model of DS - to model noradrenergic changes, a comprehensive monoaminergic characterization in multiple brain regions has not been performed so far.

View Article and Find Full Text PDF

Down syndrome (DS), caused by trisomy of human chromosome 21 (Hsa21), is the most common cause of congenital heart defects (CHD), yet the genetic and mechanistic causes of these defects remain unknown. To identify dosage-sensitive genes that cause DS phenotypes, including CHD, we used chromosome engineering to generate a mapping panel of 7 mouse strains with partial trisomies of regions of mouse chromosome 16 orthologous to Hsa21. Using high-resolution episcopic microscopy and three-dimensional modeling we show that these strains accurately model DS CHD.

View Article and Find Full Text PDF

Down Syndrome (DS) is a highly prevalent developmental disorder, affecting 1/700 births. Intellectual disability, which affects learning and memory, is present in all cases and is reflected by below average IQ. We sought to determine whether defective morphology and connectivity in neurons of the cerebral cortex may underlie the cognitive deficits that have been described in two mouse models of DS, the Tc1 and Ts1Rhr mouse lines.

View Article and Find Full Text PDF

Down syndrome (DS) is caused by trisomy of human chromosome 21 (Hsa21) and results in a large number of phenotypes, including learning difficulties, cardiac defects, distinguishing facial features and leukaemia. These are likely to result from an increased dosage of one or more of the ∼310 genes present on Hsa21. The identification of these dosage-sensitive genes has become a major focus in DS research because it is essential for a full understanding of the molecular mechanisms underlying pathology, and might eventually lead to more effective therapy.

View Article and Find Full Text PDF