Mercury ions (Hg(II)) in wastewater can accumulate and transform into the highly neurotoxic methylmercury (MeHg) in activated sludge. The release of MeHg can have severe environmental consequences, making the treatment of MeHg-contaminated sludge a pressing concern. In this study, we found that all the collected activated sludge samples, from different wastewater treatment plants in four cities, had the potential for Hg methylation.
View Article and Find Full Text PDFMine-polluted wastewater with mercury (Hg) poses severe environmental pollution since Hg(II) can be converted to highly neurotoxic methylmercury (MeHg) under anaerobic conditions. Previous studies on Hg methylation have focused on aquatic sediments, but few have investigated the MeHg formation in water layers containing algae. In this study, we investigated the dynamic effect of algae on Hg methylation throughout the lifetime of algae.
View Article and Find Full Text PDFBackground: Recently, several newer antiplatelet treatment strategies have been used in patients with coronary artery disease (CAD). Apart from the dual antiplatelet therapy (DAPT) consisting of aspirin and clopidogrel, double dose clopidogrel (DDC), triple antiplatelet therapy (TAPT) consisting of aspirin, clopidogrel and cilostazol and other newer antiplatelet agents have shown to be effective in different ways. In this analysis, we aimed to systematically compare the adverse clinical outcomes and the bleeding events which were observed when DDC was compared to the other antiplatelet regimens in patients with CAD.
View Article and Find Full Text PDF