Robust platforms and advanced biocompatible materials having diverse performances are in tremendous demand for cryopreservation of biocells, which are greatly limited by the crystallization, formation, and growth of ice crystals. The fickle structure and the arduous extraction process of modern attainable antifreezing proteins cause fatal cryoinjury of the cells making it challenging to develop anti-icing materials. Thus, designing Au colloids is an effective way to combat cell-damaging concerns during the ice freezing-thawing process.
View Article and Find Full Text PDFGold nanospheres (Au NSs) and gold nanorods (Au NRs) are traditional noble metal plasmonic nanomaterials. Particularly, Au NRs with tunable longitudinal plasmon resonance from the visible to the near-infrared (NIR) range were suitable for highly efficient photothermal applications due to the extended light-receiving range. In this work, we synthesized Au NRs and Au NSs of similar volumes and subsequently developed them into Au NR/poly(vinylidene fluoride) (PVDF) and Au NS/PVDF nanofilms, both of which exhibited excellent solar photothermal performance evaluated by solar photothermal experiments.
View Article and Find Full Text PDF