Publications by authors named "Shenyang Ouyang"

The backfill mining of coal-based solid waste in goaf poses a potential risk of heavy metal pollution to the groundwater environment, and the migration behavior of heavy metals differs significantly under the disturbance of backfill mining in close-distance multi-layer coal seams and single-layer coal seams. In this study, a migration model of heavy metals after solid backfilling in the goaf of shallow-buried close-distance thick coal seams was established, and the impact of the overburden damage and the layered distribution of the filling body on the long-term migration behavior of heavy metals were analyzed. The results show that the migration of heavy metals after close-distance coal seam backfill mining exhibits a higher risk of heavy metal pollution.

View Article and Find Full Text PDF

Coal mine safety management is the foundation and decisive factor of coal mining. The manual detection model is the main way for traditional coal mine safety management, which has problems such as inefficient identification of safety risks in coal mines, poor control accuracy and slow response measures and so on. Therefore, to make up for the shortcomings in the traditional coal mine safety management model, this paper introduces digital twin technology into coal mine safety management to achieve intelligent and efficient management of coal mine safety accidents.

View Article and Find Full Text PDF

The long-term, high-yield production of coal has resulted in the large-scale accumulation of coal gangue on the ground surface, which causes serious environmental problems. Therefore, clean and environmental treatment of coal gangue is urgently needed. In this study, the inductively coupled plasma mass spectrometer and atomic fluorescence spectrometer were used to test the background values of ten heavy metals in coal gangue taken from 25 coal mines across China; the average content, distribution characteristics, and genesis of heavy metals in these coal gangue were investigated, and the ecological risk of heavy metals in coal gangue in different regions and different geological ages was analyzed and tested.

View Article and Find Full Text PDF

In the process of coal gangue surface accumulation and underground filling disposal, the heavy metals contained in coal gangue will inevitably precipitate out and migrate, which will cause serious environmental pollution. Seventy-five gangue samples of different geological ages are obtained from 25 coal mines in China. The contents of Hg, Pb, Cd, Cr, As, Cu, Zn, Mn, Se, and Be in gangue samples are determined.

View Article and Find Full Text PDF

Underground coal mining leads to environmental problems such as gangue pollution, surface subsidence and soil erosion, etc. Solid backfilling coal mining (SBCM) can control the strata movement, reducing gangue discharge and environmental pollution in mining areas. Gangue solid wastes (GSW) are backfilled into the goaf space as the supports for the overburden strata in solid backfilling coal mining.

View Article and Find Full Text PDF