Organic solar cells (OSCs) can achieve greatly improved power conversion efficiency (PCE) by incorporating suitable additives in active layers. Their structure design often faces the challenge of operation generality for more binary blends. Herein, a simple dithieno[3,2-b:2',3'-d]pyrrole-rhodanine molecule (DR8) featuring high compatibility with polymer donor PM6 is developed as a cost-effective third component.
View Article and Find Full Text PDFIn this study, an efficient ternary bulk-heterojunction (BHJ) organic solar cell (OSC) is demonstrated by incorporating two acceptors, PCBM and ITC6-4F, with a polymer donor (PM6). This reveals that the addition of PCBM not only enhances the electron mobility of the derived BHJ blend but also facilitates exciton dissociation, resulting in a more balanced charge transport alongside with reduced trap-assisted charge recombination. Consequently, as compared to the pristine PM6/ITC6-4F device, the optimal ternary OSC is revealed to deliver an improved power conversion efficiency (PCE) of 15.
View Article and Find Full Text PDF