Purpose: Degenerative diseases of the retina, such as retinitis pigmentosa and age-related macular degeneration, are characterized by the irreversible loss of photoreceptors. Several growth factors, including glial cell derived neurotrophic factor (GDNF), have been shown to rescue retinal neurons. An alternative strategy to direct GDNF administration is its induction in host retina by small molecules.
View Article and Find Full Text PDFPhysical features of microenvironments such as matrix elasticity E can clearly influence cell morphology and cell phenotype, but many differences between model matrices raise questions as to whether a standard biological scale for E exists, especially in 3D as well as in 2D. An E-series of two distinct types of hydrogels are ligand-functionalized here with non-fibrous collagen and used to elucidate wide-ranging cell and cytoskeletal responses to E in both 2D and 3D matrix geometries. Cross-linked hyaluronic acid (HA) based matrices as well as standard polyacrylamide (PA) hydrogels show that, within hours of initial plating, the adhesion, asymmetric shape, and cytoskeletal order within mesenchymal stem cells generally depend on E nonmonotonically over a broad range of physiologically relevant E.
View Article and Find Full Text PDFThe endothelial lining of the lumen of blood vessels is a key therapeutic target for many human diseases. Polymeric filomicelles that self-assemble from polyethylene oxide (PEO)-based diblock copolymers are long and flexible rather than small or rigid, can be loaded with drugs, and--most importantly--they circulate for a prolonged period of time in the bloodstream due in part to flow alignment. Filomicelles seem promising for targeted drug delivery to endothelial cells because they can in principle adhere strongly, length-wise to specific cell surface determinants.
View Article and Find Full Text PDFShape effects of synthetic carriers are largely unexplored in vivo, although recent findings suggest that flexible filaments can persist in the circulation even if microns in length. Here, to better assess biodistribution, a near-infrared fluorophore (NIRF) was incorporated into such block copolymer "filomicelles", and both in vivo and ex vivo imaging show that the majority of these wormlike micelles remain in the circulation for at least a day after intravenous injection. NIRF imaging further suggests that filomicelles convect into a tumor and some fragments can penetrate into the tumor stroma.
View Article and Find Full Text PDFsiRNA and antisense oligonucleotides, AON, have similar size and negative charge and are often packaged for in vitro delivery with cationic lipids or polymers-but exposed positive charge is problematic in vivo. Here we demonstrate loading and functional delivery of RNAi and AON with non-ionic, nano-transforming polymersomes. These degradable carriers are taken up passively by cultured cells after which the vesicles transform into micelles that allow endolysosomal escape and delivery of either siRNA into cytosol for mRNA knockdown or else AON into the nucleus for exon skipping within pre-mRNA.
View Article and Find Full Text PDFPolymersomes are polymer-based vesicular shells that form upon hydration of amphiphilic block copolymers. These high molecular weight amphiphiles impart physicochemical properties that allow polymersomes to stably encapsulate or integrate a broad range of active molecules. This robustness together with recently described mechanisms for controlled breakdown of degradable polymersomes as well as escape from endolysosomes suggests that polymersomes might be usefully viewed as having structure/property/function relationships somewhere between lipid vesicles and viral capsids.
View Article and Find Full Text PDFThe hypothesis that incorporation of small amounts (0.3% w/w) of modified heparin in thiol-modified hyaluronan or HA and gelatin hydrogels would regulate release of cytokine growth factors (GFs) from those gels has been investigated in vitro. In addition, the physiologic response to gel implantation has been evaluated in vivo.
View Article and Find Full Text PDFInteraction of spherical particles with cells and within animals has been studied extensively, but the effects of shape have received little attention. Here we use highly stable, polymer micelle assemblies known as filomicelles to compare the transport and trafficking of flexible filaments with spheres of similar chemistry. In rodents, filomicelles persisted in the circulation up to one week after intravenous injection.
View Article and Find Full Text PDFPolymersomes are self-assembled shells of amphiphilic block copolymers that are currently being developed by many groups for fundamental insights into the nature of self-assembled states as well as for a variety of potential applications. While recent reviews have highlighted distinctive properties - particularly stability - that are strongly influenced by both copolymer type and polymer molecular weight, here we first review some of the more recent developments in computational molecular dynamics (MD) schemes that lend insight into assembly. We then review polymersome loading, in vivo stealthiness, degradation-based disassembly for controlled release, and even tumor-shrinkage in vivo.
View Article and Find Full Text PDFPurpose: Worm-like and spherical micelles are both prepared here from the same amphiphilic diblock copolymer, poly(ethylene oxide)-b-poly (epsilon-caprolactone) (PEO [5 kDa]-PCL [6.5 kDa]) in order to compare loading and delivery of hydrophobic drugs.
Materials And Methods: Worm-like micelles of this degradable copolymer are nanometers in cross-section and spontaneously assemble to stable lengths of microns, resembling filoviruses in some respects and thus suggesting the moniker 'filomicelles'.
We describe synthetic extracellular matrix (sECM) hydrogel films composed of co-crosslinked thiolated derivatives of chondroitin 6-sulfate (CS) and heparin (HP) for controlled-release delivery of basic fibroblast growth factor (bFGF) to full-thickness wounds in genetically diabetic (db/db) mice. In this model for chronic wound repair, full-thickness wounds were treated with CS, CS-bFGF, or CS-HP-bFGF films. At 2 and 4 weeks postinjury, wound closure and formation of the new epidermis and dermis were determined.
View Article and Find Full Text PDFControlled release of human vascular endothelial growth factor (VEGF) or basic fibroblast growth factor (bFGF) from hydrogels composed of chemically modified hyaluronan (HA) and gelatin (Gtn) was evaluated both in vitro and in vivo. We hypothesized that inclusion of small quantities of heparin (Hp) in these gels would regulate growth factor (GF) release over an extended period, while still maintaining the in vivo bioactivity of released GFs. To test this hypothesis, HA, Gtn, and Hp (15 kDa) were modified with thiol groups, then co-crosslinked with poly (ethylene glycol) diacrylate (PEGDA).
View Article and Find Full Text PDFNovel biomaterials have been prepared in which glycosaminoglycans (GAGs) are chemically modified to create amphiphilic multiblock copolymers that are able to adhere to hydrophobic surfaces and can self-assemble into cross-linker-free hydrogels. First, the triblock poly(ethylene oxide)-polypropylene oxide copolymers (Pluronics) were converted into the previously unknown aminooxy (AO) derivatives. Both mono-AO and bis-AO Pluronics (AOPs) were synthesized and fully characterized in order to prepare tetrablock and pentablock copolymers, respectively.
View Article and Find Full Text PDFSynthetic hydrogel mimics of the extracellular matrix (ECM) were created by crosslinking a thiol-modified analog of heparin with thiol-modified hyaluronan (HA) or chondroitin sulfate (CS) with poly(ethylene glycol) diacrylate (PEGDA). The covalently bound heparin provided a crosslinkable analog of a heparan sulfate proteoglycan, thus providing a multivalent biomaterial capable of controlled release of basic fibroblast growth factor (bFGF). Hydrogels contained >97% water and formed rapidly in <10min.
View Article and Find Full Text PDFPhotoreceptors project from the outer retinal surface into a specialized glycocalyx, the interphotoreceptor matrix (IPM), which contains hyaluronan (HA) and two novel proteoglycans, Spacr and Spacrcan. This matrix must be stable enough to function in the attachment of the retina to the outer eye wall yet porous enough to allow movement of metabolites between these tissues. How this matrix is organized is not known.
View Article and Find Full Text PDFNo clinical assays for the direct detection of heparin in blood exist. To create a heparin sensor, the hyaluronan (HA)-binding domain (HABD) of a protein that binds heparin and HA was engineered. GST fusion proteins containing one to three HABD modules were cloned, expressed, and purified.
View Article and Find Full Text PDF