Publications by authors named "Shenqiang Zhai"

Article Synopsis
  • Researchers developed an interband cascade laser (ICL) array that uses multimode interference (MMI) couplers to synchronize multiple laser emitters for better heat management and performance in the mid-infrared range (3-4 µm).
  • The design includes a wide ridge structure for improved light propagation and ensures coherent operation, as confirmed by distinct far-field patterns with interference fringes.
  • Experimental results show the array can achieve high output power (up to 390 mW) with excellent beam quality, indicating its potential for scalable high-power applications.
View Article and Find Full Text PDF
Article Synopsis
  • * A new metallic THz photonic crystal resonator design enables efficient single mode surface emission with significant output power and narrow beam divergence, all without optical lenses.
  • * This approach achieves high beam brightness and stable surface emission, offering potential advancements for THz lasers in imaging, detection, and diagnostics.
View Article and Find Full Text PDF

Topological lasers (TLs) have attracted widespread attention due to their mode robustness against perturbations or defects. Among them, electrically pumped TLs have gained extensive research interest due to their advantages of compact size and easy integration. Nevertheless, limited studies on electrically pumped TLs have been reported in the terahertz (THz) and telecom wavelength ranges with relatively low output powers, causing a wide gap between practical applications.

View Article and Find Full Text PDF

Microresonator-based high-speed single-mode quantum cascade lasers are ideal candidates for on-chip optical data interconnection and high sensitivity gas sensing in the mid-infrared spectral range. In this paper, we propose a high frequency operation of single-mode doughnut-shaped microcavity quantum cascade laser at ∼4.6 µm.

View Article and Find Full Text PDF

We present what we belive to be a new band design in which self-assembled InAs quantum dots (QD) are embedded in InGaAs quantum wells (QW) to fabricate broadband single-core quantum dot cascade lasers (QDCLs) operating as frequency combs. The hybrid active region scheme was exploited to form upper hybrid QW/QD energy states and lower pure QD energy states, which expanded the total laser bandwidth by up to 55 cm due to a broad gain medium provided by the inherent spectral inhomogeneity of self-assembled QDs. The continuous-wave (CW) output power of these devices was as high as 470 mW with optical spectra centered at ∼7 µm, which allowed CW operation at temperatures up to 45 °C .

View Article and Find Full Text PDF

The present study proposes a terahertz quantum cascade laser frequency comb (THz QCL FC) with a semi-insulated surface plasma waveguide characterized by a low threshold current density, high power and a wide current dynamic range. The gain dispersion value and the nonlinear susceptibility were optimized based on the combination of a hybrid bound-to-continuum active region with a semi-insulated surface plasmon waveguide. Without any extra dispersion compensator, stable frequency comb operation within a current dynamic range of more than 97% of the total was revealed by the intermode beat note map.

View Article and Find Full Text PDF

A second-order distributed feedback interband cascade laser emitting at 3.25 µm was designed, grown, and fabricated. By coherent epitaxy of a GaSb cap layer instead of the conventional thin InAs cap on top of the laser structure, a high-quality surface grating was made of GaSb and gold.

View Article and Find Full Text PDF

In this article, we report a high power quantum cascade laser (QCL) at λ∼7.4 µm with a broad tuning range. By carefully designing and optimizing the active region and waveguide structure, a continuous-wave (CW) output power up to 1.

View Article and Find Full Text PDF

On-chip sensors based on quantum cascade laser technology are attracting broad attention because of their extreme compactness and abundant absorption fingerprints in the mid-infrared wavelength range. Recent continuous wave operation microcavity quantum cascade lasers are well suited for high-density optoelectronic integration because their volumes are small and thresholds are low. In this experimental work, we demonstrate a monolithically integrated sensor comprising a notched elliptical resonator as transmitter, a quantum cascade detector as receiver, and a surface plasmon structure as light-sensing waveguide.

View Article and Find Full Text PDF

Increasing the power of a quantum cascade laser by widening laser ridges will lead to the degradation of the beam quality because of the operation of high-order transverse modes. We report on a phase-locked array scheme of terahertz quantum cascade laser (THz QCL) utilizing Talbot effect. By adjusting the absorbing boundary width of each ridge in the array, stable operation of the fundamental supermode is realized.

View Article and Find Full Text PDF

We demonstrate a high power InP-based quantum cascade laser (QCL) (λ ∼ 9 µm) with high characteristic temperature grown by metalorganic chemical vapor deposition (MOCVD) in this article. A 4-mm-long cavity length, 10.5-µm-wide ridge QCL with high-reflection (HR) coating demonstrates a maximum pulsed peak power of 1.

View Article and Find Full Text PDF

Micro-resonator-based lasers are well suited for high-density optoelectronic integration because of their small volumes and low thresholds. However, microcavity quantum cascade lasers for on-chip sensing have high thermal loads that make continuous-wave operation challenging. In this work, we designed an selective thermal dissipation scheme for the selective electrical isolation process to improve the thermal conductivity of the devices.

View Article and Find Full Text PDF

In this article, a field deployable sensor was developed using a self-developed 4.58-µm continuous wave quantum cascade laser (CW-QCL) for the simultaneous detection of carbon monoxide (CO) and nitrous oxide (NO), both of which have strong fundamental absorption bands in this waveband. The sensor is based on tunable diode laser absorption spectroscopy (TDLAS) technology, which combined a multi-pass gas cell (MPGC) with a 41 m optical path length to achieve high-precision detection.

View Article and Find Full Text PDF

Distributed feedback quantum cascade lasers emitting at a wavelength of 6.12 µm are reported. Benefitted from the optimized materials epitaxy and the modified bound to continuum transition active region design along with three pairs of phonon scattering, high device performance is achieved.

View Article and Find Full Text PDF

A dual-wavelength quantum cascade laser (QCL) with two shallow-etched distributed Bragg reflectors is designed and fabricated. Based on a heterogeneous active region within a single waveguide, single-mode emission at 7.6μm and 8.

View Article and Find Full Text PDF

We have demonstrated a mid-wave/long-wave dual-color infrared quantum cascade detector enhanced by antenna-coupled microcavity. By optimizing the size of patches, the coupling wavelength of the antenna-coupled microcavity can be conveniently tuned to match the targeted intersubband transition energy. At 77 K, the peak responsivity of our detector is 4.

View Article and Find Full Text PDF

We report an ultralow power consumption of a quantum cascade laser (QCL) emitting at λ ∼ 4.6 µm operating in continuous-wave mode at room temperature. The ultralow power consumption is achieved by using a high gain active region and shortening the device size.

View Article and Find Full Text PDF

In this article, a InP based strain-balanced InGaAs/InAlAs quantum cascade laser emitting at 7.7µm is reported. The active region is based on a slightly-diagonal bound to continuum design with 50 cascade stages and a low voltage defect Δ of 96 meV.

View Article and Find Full Text PDF

In this paper, an anomalous spectral data of distributed Bragg reflector (DBR) quantum cascade lasers (QCLs) emitting around 7.6 μm is presented. The two-section DBR lasers, consisting of a gain section and an unpumped Bragg reflector, display an output power above 0.

View Article and Find Full Text PDF

High-power, low-threshold stable single-mode operation buried distributed feedback quantum cascade laser by incorporating sampled grating emitting at λ ~ 4.87 μm is demonstrated. The high continuous wave (CW) output power of 948 mW and 649 mW for a 6-mm and 4-mm cavity length is obtained at 20 °C, respectively, which benefits from the optimized optical field distribution of sampled grating.

View Article and Find Full Text PDF

A quantum cascade laser emitting at λ∼8.5  μm based on the excited-state injection is presented. The operating voltage is reduced for a low-voltage defect in the excited-state design, compared with the conventional ground-state injection design.

View Article and Find Full Text PDF

We present a low threshold-current and fast wavelength-tuning external cavity quantum cascade laser (EC-QCL) using a scanning galvanometer in the Littman-Metcalf cavity geometry. The EC-QCL could repeatedly swept at 100 Hz over its full tuning range of about 290 nm (2105 cm to 2240 cm), providing a scan rate of 59.3 μm s.

View Article and Find Full Text PDF

Power scaling in broad area quantum cascade laser (QCL) usually leads to the deterioration of the beam quality with an emission of multiple lobes far-field pattern. In this letter, we demonstrate a tapered QCL array integrated with Talbot cavity at one side of the array. Fundamental supermode operation is achieved in the arrays with taper straight-end connected to the Talbot cavity.

View Article and Find Full Text PDF

In this work, quantum cascade lasers (QCLs) based on strain compensation combined with two-phonon resonance design are presented. Distributed feedback (DFB) laser emitting at ~ 4.76 μm was fabricated through a standard buried first-order grating and buried heterostructure (BH) processing.

View Article and Find Full Text PDF