Publications by authors named "Shenoy V"

Cancer cell invasion from primary tumors is mediated by a complex interplay between cellular adhesions, actomyosin-driven contractility, and the physical characteristics of the extracellular matrix (ECM). Here, we incorporate a mechanochemical free-energy-based approach to elucidate how the two-way feedback loop between cell contractility (induced by the activity of chemomechanical interactions such as Ca and Rho signaling pathways) and matrix fiber realignment and strain stiffening enables the cells to polarize and develop contractile forces to break free from the tumor spheroids and invade into the ECM. Interestingly, through this computational model, we are able to identify a critical stiffness that is required by the matrix to break intercellular adhesions and initiate cell invasion.

View Article and Find Full Text PDF

Aims: Drought is the major constraint to rainfed rice productivity in South Asia, but few reports provide detailed characterization of the soil properties related to drought stress severity in the region. The aim of the study was to provide a compilation of drought breeding network sites and their respective levels of drought stress, and to relate soil parameters with yield reduction by drought.

Methods: This study characterized levels of drought stress and soil nutrient and physical properties at 18 geographically distributed research station sites involved in rice varietal screening in Bangladesh, India, and Nepal, as well as at farmers' fields located near the research stations.

View Article and Find Full Text PDF

Two-dimensional (2D) materials that display robust ferromagnetism have been pursued intensively for nanoscale spintronic applications, but suitable candidates have not been identified. Here we present theoretical predictions on the design of ordered double-transition-metal MXene structures to achieve such a goal. On the basis of the analysis of electron filling in transition-metal cations and first-principles simulations, we demonstrate robust ferromagnetism in TiMnCT monolayers regardless of the surface terminations (T = O, OH, and F), as well as in HfMnCO and HfVCO monolayers.

View Article and Find Full Text PDF

Primary squamous cell carcinoma of thyroid is a very rare malignant disease because thyroid gland lacks squamous cells. The disease is almost fatal. Only around 60 cases have been reported in literature.

View Article and Find Full Text PDF

In native states, animal cells of many types are supported by a fibrous network that forms the main structural component of the ECM. Mechanical interactions between cells and the 3D ECM critically regulate cell function, including growth and migration. However, the physical mechanism that governs the cell interaction with fibrous 3D ECM is still not known.

View Article and Find Full Text PDF

Background: Only a few studies done earlier in India reveal the utility of real-time PCR in detecting drug resistance in cases of pulmonary tuberculosis.

Objectives: The study was carried out to standardise real-time PCR (Quantitative real-time PCR, qPCR) targeting 16s RNA for the rapid detection of tuberculosis and its drug resistance from suspected TB patients.

Materials And Methods: Sputum samples from 100 clinically suspected tuberculosis patients, after processing were subjected to microscopy, MGIT culture and qPCR.

View Article and Find Full Text PDF

Background: The metabolic regulator Fibroblast Growth Factor 21 (FGF21) is highly expressed in the acinar pancreas, but its role in pancreatic function is obscure. It appears to play a protective role in acute experimental pancreatitis in mice. The aim of this study was to define an association between FGF21 and the course and resolution of acute pancreatitis in humans.

View Article and Find Full Text PDF

While restoration of ACE2 activity in the pancreas leads to improvement of glycemia in experimental models of Type 2 diabetes, global deficiency in ACE2 disrupts β-cell function and impairs glucose tolerance in mice, demonstrating the physiological role of ACE2 in glucose homeostasis. Although the contribution of pancreatic ACE2 to glucose regulation has been demonstrated in genetic models of diabetes and in models with overexpression of the renin-angiotensin system (RAS), it is unclear whether islet ACE2 is involved in glycemic control in common models of human Type 2 diabetes. To determine whether diet-induced diabetes deregulates glucose homeostasis via reduction of ACE2 in the pancreatic islets, wild-type (WT) and ACE2 knockout (KO) male mice were fed a high-fat diet (HFD) for 16 wk.

View Article and Find Full Text PDF
Article Synopsis
  • The sympathetic nervous system has a crucial role in managing inflammation, which is linked to hypertension, but its relationship with gut health remains largely unexplored.
  • An experiment using rat models showed that hypertension leads to gut issues, such as increased permeability and changes in gut microbial communities, which may affect blood pressure regulation.
  • The study suggests that improving gut health through targeted treatments like probiotics or antibiotics, along with traditional medications, may offer a new approach to treating hypertension.
View Article and Find Full Text PDF

With the introduction of highly sensitive hepatitis B surface antigen immunoassay, transfusion associated HBV infection have reduced drastically but they still tend to occur due to blood donors with occult hepatitis B infection (OBI) and window period (WP) infection. Sera from, 24338 healthy voluntary blood donors were screened for HBsAg, HIV and HCV antibody using Vitros Enhanced Chemiluminescent Immunoassay. The median age of the donor population was 30 (range 18-54) with male preponderance (98%).

View Article and Find Full Text PDF

Unlabelled: Hypertension is the most prevalent risk factor for cardiovascular disease caused by a persistent increase in arterial blood pressure that has lasting effects on the mechanical properties of affected tissues like myocardium and blood vessels. Our group recently discovered that gut dysbiosis is linked to hypertension in several animal models and humans; however, whether hypertension influences the gut's mechanical properties remains unknown. In this study, we evaluated the hypothesis that hypertension increases fibrosis and thus mechanical properties of the gut.

View Article and Find Full Text PDF

It is now evident that the cell nucleus undergoes dramatic shape changes during important cellular processes such as cell transmigration through extracellular matrix and endothelium. Recent experimental data suggest that during cell transmigration the deformability of the nucleus could be a limiting factor, and the morphological and structural alterations that the nucleus encounters can perturb genomic organization that in turn influences cellular behavior. Despite its importance, a biophysical model that connects the experimentally observed nuclear morphological changes to the underlying biophysical factors during transmigration through small constrictions is still lacking.

View Article and Find Full Text PDF

The biomechanical behavior of tissues under mechanical stimulation is critically important to physiological function. We report a combined experimental and modeling study of bioengineered 3D smooth muscle microtissues that reveals a previously unappreciated interaction between active cell mechanics and the viscoplastic properties of the extracellular matrix. The microtissues' response to stretch/unstretch actuations, as probed by microcantilever force sensors, was dominated by cellular actomyosin dynamics.

View Article and Find Full Text PDF

A series of triclosan mimic diphenyl ether derivatives have been synthesized and evaluated for their in vitro antitubercular activity against Mycobacterium tuberculosis H37Rv. The binding mode of the compounds at the active site of enoyl-acyl carrier protein reductase of M. tuberculosis has been explored.

View Article and Find Full Text PDF

Background And Purpose: Pulmonary hypertension (PH) and pulmonary fibrosis (PF) are life threatening cardiopulmonary diseases. Existing pharmacological interventions have failed to improve clinical outcomes or reduce disease-associated mortality. Emerging evidence suggests that stem cells offer an effective treatment approach against various pathological conditions.

View Article and Find Full Text PDF

Background: Autoimmune hemolytic anemia (AIHA) is a less recognized, potentially fatal condition. There is a scarcity of data on clinicoserological characteristics and response to therapy concerning this disease from South India.

Methods: Data for 33 patients with primary AIHA recorded from July 2009 to June 2015 were retrospectively analyzed for clinical presentation, response to frontline therapy, durability of response, time to next treatment (TTNT), and response to second-line agents.

View Article and Find Full Text PDF

The excellent catalytic activity of metallic MoS2 edges for the hydrogen evolution reaction (HER) has led to substantial efforts towards increasing the edge concentration. The 2H basal plane is less active for the HER because it is less conducting and therefore possesses less efficient charge transfer kinetics. Here we show that the activity of the 2H basal planes of monolayer MoS2 nanosheets can be made comparable to state-of-the-art catalytic properties of metallic edges and the 1T phase by improving the electrical coupling between the substrate and the catalyst so that electron injection from the electrode and transport to the catalyst active site is facilitated.

View Article and Find Full Text PDF

Context: Castability has been found to be affected by many aspects of the entire casting system. Very few references in dental literature are available regarding recasting of the base metal alloys.

Aims: To evaluate and compare the castability of fresh and reused nickel-chromium alloy and to evaluate the effect of two brands of investment materials on castability of nickel-chromium alloy.

View Article and Find Full Text PDF

The fibrolamellar variant of hepatocellular carcinoma (FL-HCC) is distinguished from other hepatocellular carcinoma's (HCC) by its unique clinical and pathological features. Cytological features of this tumor on fine needle aspiration have been described earlier. We report a rare case of a 17-year-old African American male with metastatic FL-HCC, diagnosed by body fluid cytology.

View Article and Find Full Text PDF

We report on the synthesis of the first two-dimensional transition metal nitride, Ti4N3-based MXene. In contrast to the previously reported MXene synthesis methods - in which selective etching of a MAX phase precursor occurred in aqueous acidic solutions - here a molten fluoride salt is used to etch Al from a Ti4AlN3 powder precursor at 550 °C under an argon atmosphere. We further delaminated the resulting MXene to produce few-layered nanosheets and monolayers of Ti4N3Tx, where T is a surface termination (F, O, or OH).

View Article and Find Full Text PDF

Among the parapharyngeal tumours, salivary gland tumours are the commonest, followed by schwannomas, which are slow growing benign tumours. Half of the parapharyngeal schwannomas originate from the vagus. Complete surgical excision is the treatment of choice.

View Article and Find Full Text PDF

The microtubule (MT) cytoskeleton can transmit mechanical signals and resist compression in contracting cardiomyocytes. How MTs perform these roles remains unclear because of difficulties in observing MTs during the rapid contractile cycle. Here, we used high spatial and temporal resolution imaging to characterize MT behavior in beating mouse myocytes.

View Article and Find Full Text PDF

The quantum anomalous Hall (QAH) insulator is a novel topological state of matter characterized by a nonzero quantized Hall conductivity without an external magnetic field. Using first-principles calculations, we predict the QAH state in monolayers of covalent-organic frameworks based on the newly synthesized X_{3}(C_{18}H_{12}N_{6})_{2} structure where X represents 5d transition metal elements Ta, Re, and Ir. The π conjugation between X d_{xz} and d_{yz} orbitals, mediated by N p_{z} and C p_{z} orbitals, gives rise to a massive Dirac spectrum in momentum space with a band gap of up to 24 meV due to strong spin-orbit coupling.

View Article and Find Full Text PDF

In flexible 2D-devices, strain transfer between different van-der Waals stacked layers is expected to play an important role in determining their optoelectronic performances and mechanical stability. Using a 2D non-linear shear-lag model, we demonstrate that only 1-2% strain can be transferred between adjacent layers of different 2d-materials, depending on the strength of the interlayer vdW interaction and the elastic modulus of the individual layers. Beyond this critical strain, layers begin to slip with respect to each other.

View Article and Find Full Text PDF

We propose a chemo-mechanical model based on stress-dependent recruitment of myosin motors to describe how the contractility, polarization and strain in cells vary with the stiffness of their surroundings and their shape. A contractility tensor, which depends on the distribution of myosin motors, is introduced to describe the chemical free energy of the cell due to myosin recruitment. We explicitly include the contributions to the free energy that arise from mechanosensitive signalling pathways (such as the SFX, Rho-Rock and MLCK pathways) through chemo-mechanical coupling parameters.

View Article and Find Full Text PDF