Publications by authors named "Shenjiang Hu"

The efficacy of adjunctive ambrisentan treatment in patients with systemic sclerosis (SSc) suffering from digital ulcers (DUs) was investigated. Patients (4 males, 7 females) diagnosed with SSc at our hospital between 2017 and 2022 were enrolled. Ten of them had diffuse SSc, while one had limited SSc.

View Article and Find Full Text PDF

Background: Cardiac arrhythmia is a common disease associated with high mortality and morbidity. Circulating leukocyte counts, which serve as a biomarker for assessing systemic immune status, have been linked to arrhythmias in observational studies. However, observational studies are plagued by confounding factors and reverse causality, whether alterations in circulating leukocyte components are causally associated with arrhythmias remains uncertain.

View Article and Find Full Text PDF

A large number of studies suggest that uric acid (UA) is related to the occurrence, complications, and prognosis of atrial fibrillation (AF). However, the guidelines did not clearly elaborate on this issue. The current research results need to be summarized to analyze the association between UA and AF.

View Article and Find Full Text PDF

Purpose: This study aimed to explore relationships between whole blood copper (Cu), zinc (Zn) and Cu/Zn ratio and cardiac dysfunction in patients with septic shock.

Subjects And Methods: Between April 2018 and March 2020, septic shock patients with sepsis-induced left ventricular systolic dysfunction (SILVSD, left ventricular ejection fraction, LVEF<50%) and with no sepsis-induced myocardial dysfunction (non-SIMD, septic shock alone and LVEF>50%) and controls were prospectively enrolled. Whole blood Cu and Zn levels were measured using flame atomic absorption spectrophotometry.

View Article and Find Full Text PDF

The mevalonate pathway is essential for cholesterol biosynthesis. Previous studies have suggested that the key enzyme in this pathway, farnesyl diphosphate synthase (FDPS), regulates the cardiovascular system. We used human samples and mice that were deficient in cardiac FDPS (c-Fdps mice) to investigate the role of FDPS in cardiac homeostasis.

View Article and Find Full Text PDF

Dilated cardiomyopathy (DCM) is a relatively common cause of heart failure and the leading cause of heart transplantation. Aberrant changes in long non-coding RNAs (lncRNAs) are involved in DCM disorder; however, the detailed mechanisms underlying DCM initiation and progression require further investigation, and new molecular targets are needed. Here, we obtained lncRNA-expression profiles associated with DCM and non-failing hearts through microarray probe-sequence re-annotation.

View Article and Find Full Text PDF

Background: Anticoagulant therapy is one of the important aspects of atrial fibrillation (AF) management, which can effectively reduce the formation of left atrial thrombosis (LAT) and the occurrence of embolic events. The CHA2DS2-VASc score is a commonly used risk assessment tool for embolic events, and it has guiding significance for anticoagulant therapy. However, a large number of recent studies have clearly shown that some of the markers that are not included in the score affect the formation of LAT.

View Article and Find Full Text PDF

gene knockout causes hypertension in castrated mice. EPHB6 controls catecholamine secretion by adrenal gland chromaffin cells (AGCCs) in a testosterone-dependent way. Nicotinic acetylcholine receptor (nAChR) is a ligand-gated Ca/Na channel, and its opening is the first signaling event leading to catecholamine secretion by AGCCs.

View Article and Find Full Text PDF

Background: Takotsubo syndrome is an uncommon, acute, and reversible cardiomyopathy that occurs primarily in postmenopausal females. The clinical presentation of the syndrome resembles acute coronary syndrome, but coronary angiography reveals no obstructive coronary artery disease. Rarely, a catecholamine surge due to pheochromocytoma may induce Takotsubo syndrome.

View Article and Find Full Text PDF

The use of peripherally inserted central catheters (PICCs) has expanded substantially for drug delivery in clinical practice in recent years. However, PICC lines expose patients to potential complications associated with an increasing incidence of infective endocarditis. We herein report a case of a 57-year-old woman who was diagnosed with tricuspid valve endocarditis by echocardiography.

View Article and Find Full Text PDF

Hyperglycemia contributes to the excessive proliferation and migration of vascular smooth muscle cells (VSMC), which are closely associated with atherosclerosis. MicroRNAs (miRNAs/miRs) constitute a novel class of gene regulators, which have important roles in various pathological conditions. The aim of the present study was to identify miRNAs involved in the high glucose (HG)‑induced VSMC phenotype switch, and to investigate the underlying mechanism.

View Article and Find Full Text PDF

Background: High risk of embolic events exists in both patients with chronic atrial fibrillation (AF) and patients in the perioperative period of ablation (effective treatment for AF). Therefore, anticoagulant therapy is important. Oral anticoagulants can be divided into two major categories: vitamin K antagonists (VKAs) and non-vitamin K antagonist oral anticoagulants (NOACs).

View Article and Find Full Text PDF

Several members of the EPH kinase family and their ligands are involved in blood pressure regulation, and such regulation is often sex- or sex hormone-dependent, based on animal and human genetic studies. EPHB6 gene knockout (KO) in mice leads to hypertension in castrated males but not in un-manipulated KO males or females. To assess whether this finding in mice is relevant to human hypertension, we conducted a human genetic study for the association of EPHB6 and its two ligands, EFNB1 and EFNB3, with hypertension in hypogonadic patients.

View Article and Find Full Text PDF

Background/aims: Interference with endothelial progenitor cell (EPC) neovascularization is a novel therapeutic target for neovascular-related diseases. Angiotensin Ⅱ (Ang Ⅱ) was found to enhance new vessel formation and aggravated neovascular-related diseases. In this study, we investigated the effects of Ang Ⅱ on EPC neovascular-related functions and explored the underlying mechanisms.

View Article and Find Full Text PDF

Farnesyl pyrophosphate synthase (FPPS) is a vital enzyme in the mevalonate pathway. Our previous study has indicated that overexpression of FPPS increases hypoxia/reoxygenation (HR) injury in Heart-derived H9c2 Cells. Hence, we designed this experiment to further investigate the effect of FPPS on myocardial ischemia/reperfusion (MIR) injury using a transgenic (Tg) model, and explore the relevant mechanisms.

View Article and Find Full Text PDF

Recent studies have revealed that geranylgeranyl pyrophosphate synthase (GGPPS), a key enzyme involved in protein prenylation, plays a critical role in postnatal heart growth by regulating cardiomyocyte size. However, the role of GGPPS in myocardial ischemia/reperfusion (MIR) injury is still not clear. The objective of this work was to investigate the effect of GGPPS on MIR injury in H9c2 cells subjected to hypoxia/reoxygenation (HR) to mimic MIR.

View Article and Find Full Text PDF

Background: Antithrombotic therapy using new oral anticoagulants (NOACs) in patients with atrial fibrillation (AF) has been generally shown to have a favorable risk-benefit profile. Since there has been dispute about the risks of gastrointestinal bleeding (GIB) and intracranial hemorrhage (ICH), we sought to conduct a systematic review and network meta-analysis using Bayesian inference to analyze the risks of GIB and ICH in AF patients taking NOACs.

Methods: We analyzed data from 20 randomized controlled trials of 91 671 AF patients receiving anticoagulants, antiplatelet drugs, or placebo.

View Article and Find Full Text PDF

Farnesyl pyrophosphate synthase (FPPS) is a key enzyme in the mevalonate pathway. Our previous studies have indicated that cardiac-specific overexpression of FPPS induces cardiac hypertrophy and dysfunction in mice, and inhibition of FPPS prevents angiotensin (Ang) II-induced hypertrophy in cardiomyocytes. However, the role for FPPS in myocardial ischemia/reperfusion (MIR) injury is still not clear.

View Article and Find Full Text PDF

Myocardial infarction (MI) is the leading cause of fatality worldwide. Our study aimed to investigate the dysregulated long non-coding RNA (lncRNA) in MI and elucidate the mechanism of it in MI. The lncRNA and mRNA expression profiling of the whole left ventricular tissue of MI mice model (8 mice) and Sham group (8 mice) was obtained based on microarray analysis.

View Article and Find Full Text PDF
Article Synopsis
  • Congenital left atrial appendage aneurysm (LAAA) is a rare heart defect that can lead to severe complications like blood clots, heart rhythm issues, and heart failure, making early surgery usually necessary.
  • A case study of a female patient revealed that she completed a pregnancy and a C-section without complications, but later required surgery for her LAAA due to chest pain caused by the aneurysm pressing on nearby heart structures.
  • While surgery is often recommended for most patients with LAAA to avoid serious outcomes, asymptomatic patients without blood clots may be monitored instead; regular check-ups using echocardiography and brain MRI are important for managing the condition.
View Article and Find Full Text PDF

Farnesyl pyrophosphate synthase (FPPS) is a key enzyme in the mevalonate pathway. In our previous studies, we find that inhibition of FPPS attenuates angiotensin II-induced cardiac hypertrophy and fibrosis by suppressing RhoA while FPPS and Ras are up-regulated in pressure overload rats. In this study, we evaluate the effects and mechanisms of FPPS inhibition in pressure overload mice.

View Article and Find Full Text PDF

Several erythropoietin-producing hepatocellular receptor B family (EPHB) and their ligands, ephrinBs (EFNBs), are involved in blood pressure regulation in animal models. We selected 528 single nucleotide polymorphisms (SNPs) within the genes of EPHB6, EFNB2, EFNB3 and GRIP1 in the EPH/EFN signalling system to query the International Blood Pressure Consortium dataset. A SNP within the glutamate receptor interacting protein 1 (GRIP1) gene presented a p-value of 0.

View Article and Find Full Text PDF

Reactive oxygen species (ROS), originating predominantly from vascular smooth muscle cells (VSMCs), lead to vascular damage and endothelial dysfunction in rats with hypertension. The downstream signaling pathways of farnesyl pyrophosphate (FPP) synthase, Ras-related C3 botulinum toxin substrate 1 (Rac1) and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, mediate the generation of ROS. The present study investigated the effect of the FPP synthase inhibitor, ibandronate, on ROS production, the possible beneficial effect on endothelial dysfunction and the underlying mechanisms in spontaneously hypertensive rats (SHRs).

View Article and Find Full Text PDF

EPH kinases and their ligands, ephrins (EFNs), have vital and diverse biological functions, although their function in blood pressure (BP) control has not been studied in detail. In the present study, we report that Efnb3 gene knockout (KO) led to increased BP in female but not male mice. Vascular smooth muscle cells (VSMCs) were target cells for EFNB3 function in BP regulation.

View Article and Find Full Text PDF

Heart failure (HF) is a complex pathophysiological syndrome that arises from a primary defect in the ability of the heart to take in and/or eject sufficient blood. Genetic mutations associated with familial dilated cardiomyopathy, hypertrophic cardiomyopathy, and arrhythmogenic right ventricular cardiomyopathy can contribute to the various pathologies of HF. Therefore, genetic screening could be an approach for guiding individualized therapies and surveillance.

View Article and Find Full Text PDF