Biophysically detailed multi-compartment models are powerful tools to explore computational principles of the brain and also serve as a theoretical framework to generate algorithms for artificial intelligence (AI) systems. However, the expensive computational cost severely limits the applications in both the neuroscience and AI fields. The major bottleneck during simulating detailed compartment models is the ability of a simulator to solve large systems of linear equations.
View Article and Find Full Text PDFMetallic glasses and cancer theranostics are emerging fields that do not seem to be related to each other. Herein, we report the facile synthesis of amorphous iron nanoparticles (AFeNPs) and their superior physicochemical properties compared to their crystalline counterpart, iron nanocrystals (FeNCs). The AFeNPs can be used for cancer theranostics by inducing a Fenton reaction in the tumor by taking advantage of the mild acidity and the overproduced H2 O2 in a tumor microenvironment: Ionization of the AFeNPs enables on-demand ferrous ion release in the tumor, and subsequent H2 O2 disproportionation leads to efficient (.
View Article and Find Full Text PDF