Publications by authors named "Shengzhen Tao"

Quantitative susceptibility mapping (QSM) is a tool for mapping tissue susceptibility. Using QSM for functional brain mapping, it is possible to directly quantify blood-oxygen-level-dependent (BOLD) susceptibility changes. This study presents a submillimeter functional QSM (fQSM) approach compared to BOLD fMRI from data acquired with 3D gradient-echo echo planar imaging (EPI) at ultra-high field.

View Article and Find Full Text PDF

Deep brain stimulation (DBS) is a method of electrical neuromodulation used to treat a variety of neuropsychiatric conditions including essential tremor, Parkinson's disease, epilepsy, and obsessive-compulsive disorder. The procedure requires precise placement of electrodes such that the electrical contacts lie within or in close proximity to specific target nuclei and tracts located deep within the brain. DBS electrode trajectory planning has become increasingly dependent on direct targeting with the need for precise visualization of targets.

View Article and Find Full Text PDF

Objective: The aim of this study was to compare outcomes of direct targeting in deep brain stimulation (DBS) for essential tremor using 7T MRI versus 3T MRI. The authors hypothesized that 7T MRI direct targeting would be noninferior to 3T MRI in early tremor outcomes.

Methods: A retrospective study was conducted on patients undergoing unilateral thalamic DBS for essential tremor between 2021 and 2023.

View Article and Find Full Text PDF

Objectives: Detection of infratentorial demyelinating lesions in multiple sclerosis (MS) presents a challenge in magnetic resonance imaging (MRI), a difficulty that is further heightened in 7 T MRI. This study aimed to assess the efficacy of a novel MRI approach, lesion-attenuated magnetization-prepared gradient echo acquisition (LAMA), for detecting demyelinating lesions within the posterior fossa and upper cervical spine on 7 T MRI and contrast its performance with conventional double-inversion recovery (DIR) and T2-weighted turbo spin echo sequences.

Materials And Methods: We conducted a retrospective cross-sectional study in 42 patients with a confirmed diagnosis of MS.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a prevalent neurodegenerative disorder that presents a diagnostic challenge due to symptom overlap with other disorders. Neuromelanin (NM) imaging is a promising biomarker for PD, but adoption has been limited, in part due to subpar performance at standard MRI field strengths. We aimed to evaluate the diagnostic utility of ultra-high field 7T NM-sensitive imaging in the diagnosis of PD versus controls and essential tremor (ET), as well as NM differences among PD subtypes.

View Article and Find Full Text PDF

Background And Purpose: An early and accurate diagnosis of multiple sclerosis remains challenging in clinical neurology. Established diagnostic methods have less than desirable sensitivity and specificity. An accurate, noninvasive diagnostic test for MS could have a major impact on diagnostic criteria.

View Article and Find Full Text PDF

Background: Advances in MRI technology have increased interest in direct targeting for deep brain stimulation (DBS). Various imaging sequences have been shown to provide increased contrast of numerous common DBS targets, such as T1-weighted, Fast Gray Matter Acquisition T1 Inversion Recovery (FGATIR), gray matter nulled, and Edge-Enhancing Gradient Echo (EDGE); however, the continual increase in the number of necessary sequences has led to an increase in imaging time, which is undesirable. Additionally, carefully timed inversion pulses can often lead to less-than-ideal contrast in some subjects, particularly in ultra-high field MRI, where B1+ field inhomogeneity can lead to substantial contrast variation.

View Article and Find Full Text PDF

Transient ischemic attack (TIA) has gained significant attention recently due to the increased incidence of subsequent stroke. However, there are many nonvascular clinical mimics of TIA, creating a need for improved biomarkers to identify a vascular origin. Following the recent approval of ultra-high field (UHF) 7T MRI in clinical practice, several clinical studies have highlighted its added utility in neuroimaging compared to lower-field 1.

View Article and Find Full Text PDF

Purpose: Deep brain stimulation (DBS) is an effective treatment of various neurological disorders. Due to higher intrinsic signal, 7 T MRI can potentially improve delineation of DBS targets. However, the severe RF transmit field (B1+) inhomogeneity at 7 T can compromise the image contrast of traditional single-contrast sequences for DBS targeting, leading to sub-optimal target visualization.

View Article and Find Full Text PDF

Purpose: The onset of atherosclerosis is preceded by changes in blood perfusion within the arterial wall due to localized proliferation of the vasa vasorum. The purpose of this study was to quantify these changes in spatial density of the vasa vasorum using a research whole-body photon-counting detector CT (PCD-CT) scanner and a porcine model.

Approach: Vasa vasorum angiogenesis was stimulated in the left carotid artery wall of anesthetized pigs ( ) while the right carotid served as a control.

View Article and Find Full Text PDF

3D time-of-flight (TOF) MR angiography (MRA) benefits from ultra-high-field MRI (≥7 T) due to improved contrast and increased signal-to-noise ratio. However, high-resolution TOF MRA at 7T usually requires longer acquisition times. In addition, relatively higher specific absorption rate (SAR) at 7T limits the choice of optimal pulse sequence parameters, especially if venous saturation is employed.

View Article and Find Full Text PDF

Purpose: The purpose of this work is to evaluate the scaled computed tomography (CT) number accuracy of an artificial 120 kV reconstruction technique based on phantom experiments in the context of radiation therapy planning.

Methods: An abdomen-shaped electron density phantom was scanned on a clinical CT scanner capable of artificial 120 kV reconstruction using different tube potentials from 70 to 150 kV. A series of tissue-equivalent phantom inserts (lung, adipose, breast, solid water, liver, inner bone, 30%/50% CaCO , cortical bone) were placed inside the phantom.

View Article and Find Full Text PDF

Deep brain stimulation (DBS) is an increasingly utilized treatment for multiple neurological disorders. Continued improvements in DBS outcome are, in part, related to increasing ability to directly visualize stimulation targets by MRI. However, it is challenging to image DBS targets with conventional MRI techniques due to limited contrast.

View Article and Find Full Text PDF

The use of a photon counting detector in CT (PCD CT) is currently the subject of intense investigation and development. In this review article, we will describe potential clinical applications of this technology with a particular focus on the experience of our own institution with a prototype PCD CT scanner. PCDs have three primary advantages over conventional, energy integrating detectors (EIDs): they provide spectral information without need for a dedicated dual energy protocol; they are immune to electronic noise; and they can be made very high resolution without significant compromises to quantum efficiency.

View Article and Find Full Text PDF

Background: Mega-voltage fan-beam Computed Tomography (MV-FBCT) holds potential in accurate determination of relative electron density (RED) and proton stopping power ratio (SPR) but is not widely available.

Objective: To demonstrate the feasibility of MV-FBCT using a medical linear accelerator (LINAC) with a 2.5 MV imaging beam, an electronic portal imaging device (EPID) and multileaf collimators (MLCs).

View Article and Find Full Text PDF

Objectives: To compare the accuracy of coronary calcium quantification of cadaveric specimens imaged from a photon-counting detector (PCD)-CT and an energy-integrating detector (EID)-CT.

Methods: Excised coronary specimens were scanned on a PCD-CT scanner, using both the PCD and EID subsystems. The scanning and reconstruction parameters for EID-CT and PCD-CT were matched: 120 kV, 9.

View Article and Find Full Text PDF

Purpose: To determine the accuracy of CT number and calcium score of a kV-independent technique based on an artificial 120 kV reconstruction, and its potential to reduce radiation dose.

Methods: Anthropomorphic chest phantoms were scanned on a third-generation dual-source CT system equipped with the artificial 120 kV reconstruction. First, a phantom module containing a 20-mm diameter hydroxyapatite (HA) insert was scanned inside the chest phantoms at different tube potentials (70-140 kV) to evaluate calcium CT number accuracy.

View Article and Find Full Text PDF

The clinical demand for low image noise often limits the slice thickness used in many CT applications. However, a thick-slice image is more susceptible to longitudinal partial volume effects, which can blur key anatomic structures and pathologies of interest. In this work, we develop a prior knowledge aware iterative denoising (PKAID) framework that utilizes spatial data redundancy in the slice increment direction to generate low-noise, thin-slice images, and demonstrate its application in non-contrast head CT exams.

View Article and Find Full Text PDF

Purpose: To develop a convolutional neural network (CNN) that can directly estimate material density distribution from multi-energy computed tomography (CT) images without performing conventional material decomposition.

Methods: The proposed CNN (denoted as Incept-net) followed the general framework of encoder-decoder network, with an assumption that local image information was sufficient for modeling the nonlinear physical process of multi-energy CT. Incept-net was implemented with a customized loss function, including an in-house-designed image-gradient-correlation (IGC) regularizer to improve edge preservation.

View Article and Find Full Text PDF

Multi-energy CT imaging of large patients with conventional dual-energy (DE)-CT using an energy-integrating-detector (EID) is challenging due to photon starvation-induced image artifacts, especially in lower tube potential (80-100 kV) images. Here, we performed phantom experiments to investigate the performance of DECT for morbidly obese patients, using an iodine and water material decomposition task as an example, on an emulated dual-source (DS)-photon-counting-detector (PCD)-CT, and compared its performance with a clinical DS-EID-CT. An abdominal CT phantom with iodine inserts of different concentrations was wrapped with tissue-equivalent gel layers to emulate a large patient (50 cm lateral size).

View Article and Find Full Text PDF

Proliferation of vasa vasorum, the microvasculature within artery walls, is an early marker of atherosclerosis. Detection of subtle changes in the spatial density of vasa vasorum using contrast-enhanced CT is challenging due to the limited spatial resolution and blooming effects. We report a forward model-based blooming correction technique to improve vasa vasorum detection in a porcine model imaged using an ultra-high resolution photon-counting detector CT.

View Article and Find Full Text PDF

Objective: The aim of this study was to grade cartilage damage in a swine model of osteoarthritis using a whole-body photon-counting detector (PCD) CT.

Materials And Methods: A multienergy phantom containing gadolinium (Gd) (2, 4, 8, and 16 mg/mL) and hydroxyapatite (200 and 400 mg/cc) was scanned using a PCD-CT system (48 × 0.25 mm collimation, 80 kV, 800 mAs, D50 reconstruction kernel) to serve as calibration for material decomposition and to assess quantification accuracy.

View Article and Find Full Text PDF