Publications by authors named "Shengzhao Li"

Humans possess the remarkable ability to perceive the intricate world by integrating multiple senses. However, the challenge of enabling humanoid robots to achieve multimodal sensing and fine recognition of metallic materials persists. In this study, we propose a flexible tactile sensor that mimics the sensory patterns of human skin, which is assembled by a flexible electromagnetic coil that is engraved on the surface of a polyimide substrate and porous MXene/CNT aerogel.

View Article and Find Full Text PDF

In the food industry, the emulsifying process alters both the stability and quality of the emulsified products prepared by bovine bone high-temperature hydrolysate (BBHH). The microstructure and interactions of BBHH emulsion were characterized by cryo-scanning electron microscopy (Cryo-SEM) and Raman spectroscopy during emulsification. Notably, BBHH emulsion exhibited the best properties under emulsifying for 120 s, attributed to its interfacial adsorption characteristics.

View Article and Find Full Text PDF

Smart fibers capable of integrating the multifunctionality of actuation and self-sensation into a single proprioceptive device have significant applications in soft robots and biomedicine. Especially, the achievement of self-sensing the movement patterns of different actuating segments in one fiber is still a great challenge. Herein, in this study, a fiber with the controllable Janus architecture is successfully proposed via an artful centrifugation-driven hierarchical gradient self-assembly strategy, which couples two functional components of piezoresistive carbon nanotubes and magnetic NdFeB nanoparticles into the upper and lower layers of this flexible fibrous framework with the porous sponge structure partially, respectively.

View Article and Find Full Text PDF

The inadequacy of tactile perception systems in humanoid robotic manipulators limits the breadth of available robotic applications. Here, we designed a multifunctional flexible tactile sensor for robotic fingers that provides capabilities similar to those of human skin sensing modalities. This sensor utilizes a novel PI-MXene/SrTiO hybrid aerogel developed as a sensing unit with the additional abilities of electromagnetic transmission and thermal insulation to adapt to certain complex environments.

View Article and Find Full Text PDF

Liver cancer is a prevalent type of tumor worldwide. CRISPR-Cas9 technology can be utilized to identify therapeutic targets for novel therapeutic approaches. In this study, our goal was to identify key genes related to the survival of hepatocellular carcinoma (HCC) cells by analyzing the DepMap database based on CRISPR-Cas9.

View Article and Find Full Text PDF

Multifunctional selectivity and mechanical properties are always a focus of attention in the field of flexible sensors. In particular, the construction of biomimetic architecture for sensing materials can endow the fabricated sensors with intrinsic response features and extra-derived functions. Here, inspired by the asymmetric structural features of human skin, a novel tannic acid (TA)-modified MXene-polyurethane film with a bionic Janus architecture is proposed, which is prepared by gravity-driven self-assembly for the gradient dispersion of 2D TA@MXene nanosheets into a PU network.

View Article and Find Full Text PDF

Electrical conductive metal-organic frameworks (EC-MOFs) are emerging as an appealing class of highly tailorable electrically conducting materials with potential applications in optoelectronics. Here, we in situ grew nickel hexahydroxytriphenylene (Ni-CAT) on the surface of ZnO nanorods (NRs). The self-powered photodetectors (PDs) were fabricated with heterojunctions formed at the interface of ZnO NRs and Ni-CAT.

View Article and Find Full Text PDF

For the energy supply of smart and portable equipment, high performance supercapacitor electrode materials are drawing more and more concerns. Conductive Ni-MOF is a class of materials with higher conductivity compared with traditional MOFs, but it continues to lack stability. Specifically, MXene (TiCT) has been employed as an electrochemical substrate for its high mechanical stability and abundant active sites, which can be combined with MOFs to improve its electrochemical performance.

View Article and Find Full Text PDF

FNDC5 belongs to the family of proteins called fibronectin type III domain-containing which carry out a variety of functions. The expression of FNDC5 is associated with the occurrence and development of tumors. However, the role of FNDC5 in gastric cancer remains relatively unknown.

View Article and Find Full Text PDF

Background: Renal cell carcinoma (RCC) is the seventh most common cancer in humans, of which clear cell renal cell carcinoma (ccRCC) accounts for the majority. Recently, although there have been significant breakthroughs in the treatment of ccRCC, the prognosis of targeted therapy is still poor. Leukemia inhibitory factor (LIF) is a pleiotropic protein, which is overexpressed in many cancers and plays a carcinogenic role.

View Article and Find Full Text PDF