Publications by authors named "Shengyun Lei"

Introduction: Diabetic cardiomyopathy (DCM) is predominantly distinguished by impairment in ventricular function and myocardial fibrosis. Previous studies revealed the cardioprotective properties of C1q/tumor necrosis factor-related protein 9 (CTRP9). However, whether CTRP9 affects diabetic myocardial fibrosis and its underlying mechanisms remains unclear.

View Article and Find Full Text PDF

Recently, emerging evidence has suggested that obesity become a prevalent health threat worldwide. Reportedly, CTRP9 can ameliorate HFD induced obesity. However, the molecular mechanism underlying the role of CTRP9 in obesity remains elusive.

View Article and Find Full Text PDF

The NLRP3 inflammasome plays a vital role in inflammation by increasing the maturation of interleukin-1β (IL-1β) and promoting pyroptosis. Given that C1q/tumour necrosis factor-related protein-9 (CTRP9) has been shown to be involved in diverse inflammatory diseases, we sought to assess the underlying impact of CTRP9 on NLRP3 inflammasome activation. In vitro, macrophages isolated from murine peritonea were stimulated with exogenous CTRP9, followed by lipopolysaccharide (LPS) and adenosine 5'-triphosphate (ATP).

View Article and Find Full Text PDF

The apoptosis of foam cells leads to instability of atherosclerotic plaques. This study was designed to explore the protective role of CTRP9 in foam cell apoptosis. In our experiment, CTRP9 alleviated foam cell apoptosis.

View Article and Find Full Text PDF

Inflammation plays a critical role in the development of atherosclerosis (AS), which has been identified as a major predisposing factor for stroke. Macrophages and VSMCs are associated with plaque formation and progression. Macrophages can dynamically change into two main functional phenotypes, namely M1 and M2, they can produce either pro-inflammatory or anti-inflammatory factors which may affect the outcome of inflammation.

View Article and Find Full Text PDF

Background: Oxidative stress in cardiac myocytes is an important pathogenesis of cardiac lipotoxicity. Autophagy is a cellular self-digestion process that can selectively remove damaged organelles under oxidative stress, and thus presents a potential therapeutic target against cardiac lipotoxicity. Globular CTRP9 (gCTRP9) is a newly identified adiponectin paralog with established metabolic regulatory properties.

View Article and Find Full Text PDF

CTRP9 has been reported to regulate lipid metabolism and exert cardioprotective effects, yet its role in high-fat diet (HFD)-induced cardiac lipotoxicity and the underlying mechanisms remain unclear. In the current study, we established HFD-induced obesity model in wild-type (WT) or CTRP9 knockout (CTRP9-KO) mice and palmitate-induced lipotoxicity model in neonatal rat cardiac myocytes (NRCMs) to investigate the effects of CTRP9 on cardiac lipotoxicity. Our results demonstrated that the HFD-fed CTRP9-KO mice accentuated cardiac hypertrophy, fibrosis, endoplasmic reticulum (ER) stress-initiated apoptosis and oxidative stress compared with the HFD-fed WT mice.

View Article and Find Full Text PDF

The C1q tumor necrosis factor (TNF)-related proteins 9 (CTRP9), an adipocyte-derived cytokine, affects a number of physiological processes, including immune function and inflammation. We investigated whether CTRP9 affects the expression of inflammation-related genes in Raw 264.7 and peritoneal macrophages.

View Article and Find Full Text PDF