Drug Deliv Transl Res
December 2024
With the advancements in nanotechnology and biomaterials science, the development of nanodrug delivery systems (Nano-DDSs) has provided opportunities for the realization of precise targeted treatment of malignant tumors. Liposomes have become a type of DDS with early clinical application and mature development due to their excellent tissue-targeting capacity and outstanding biocompatibility. However, several obstacles remain, such as recognition and clearance by the immune system, a short half-life, and poor tumor targeting.
View Article and Find Full Text PDFTumor hypoxic microenvironment can reduce the therapeutic effects of chemotherapy, radiotherapy, photodynamic therapy, immunotherapy, etc. It is also a potential source of tumor recurrence and metastasis. A biomimetic nanosystem based on zeolitic imidazolate framework 8 (ZIF8), which had multifunctions of hypoxia relief, chemotherapy, and photothermal therapy, was established to improve tumor hypoxic microenvironment and overcome the corresponding therapeutic resistance.
View Article and Find Full Text PDFHydrogen (H) therapy is a novel and rapidly developing strategy utilized to treat inflammatory diseases. However, the therapeutic efficacy of H is largely limited with on-target off-synovium toxic effect, nonpolarity and low solubility. Herein, an intelligent H nanogenerator based upon the metal-organic framework (MOF) loaded with polydopamine and Perovskite quantum dots is constructed for the actualization of hydrogenothermal therapy.
View Article and Find Full Text PDFAmyloid β-peptide oligomer (AβO) has received extensive attention from researchers because of its clinical therapeutic intervention targets and the value of reliable biological macromolecules markers for early diagnosis of Alzheimer's disease. We have developed a novel label-free electrochemical detection sensor for AβO based on hybridization chain reaction (HCR)-triggered poly adenine to absorb silver nanoparticles (AgNPs). In this method, we first use the "capture probe" to immobilize the aptamer 1 on the surface of the gold electrode (GE) via poly adenine-Au.
View Article and Find Full Text PDFIn our research, label-free and surface-enhanced Raman dyes-free Raman spectroscopy which was used to detect carcinoembryonic antigen (CEA) according to poly adenine (Poly A)-regulated self-assembly methods was developed and studied. CEA induced partial hybridization of Ab-H2 and Ab-H1, and Ab-H1-CEA-Ab-H2 (a sandwich proximity CEA-DNA complex) was formed, which unfolded molecular beacon 1 (MB1) and modified the substrate. Subsequently, MB2-AuNPs were hybridized with MB1, and Ab-H1-CEA-Ab-H2 was released via toehold regulated displacements of DNA strands.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2022
Discoid-reconstituted high-density lipoprotein (d-rHDL) is advantageous for tumor-targeted drug delivery due to its small size, long circulation, and efficient internalization into cancer cells. Nevertheless, an allosteric reaction catalyzed by serum lecithin-cholesterol acyltransferase (LCAT) may cause drug leakage from d-rHDL and reduce its targeting efficiency. Conversely, similar "structural weakening" catalyzed by acyl-coenzyme A-cholesterol acyltransferase (ACAT) inside tumor cells can stimulate precise intracellular drug release.
View Article and Find Full Text PDFAccurate diagnosis and precise and effective treatment are currently the two magic weapons for dealing with cancer. However, a single marker is often associated with multiple cellular events, which is not conducive to accurate diagnosis, and overly mild treatment methods often make the treatment effect unsatisfactory. In this paper, we construct a Au/Pd octopus nanoparticle-DNA nanomachine (Au/Pd ONP-DNA nanomachine) as a fully automatic diagnosis and treatment logic system.
View Article and Find Full Text PDFTumour microenvironment (TME)-targeting nanoparticles (NPs) were developed based on Methanococcus jannaschii small heat shock proteins (Mj-sHSPs). Transactivator of transcription (TAT) were modified on the surface of Mj-sHSPs (T-HSPs) to enhance their cellular internalization ability (CIA), and a pH/enzyme dual sensitive PEG/N-(2-aminoethyl)piperidine-hyaluronic acid (PAHA) coat was combined with T-HSPs (PT-HSPs). PT-HSP NPs exhibited multi-layered morphologies and good stability against plasma protein adsorption.
View Article and Find Full Text PDF