Publications by authors named "Shengyong Jia"

The combination of intermittently weak ultrasound and sequencing batch reactor was thoroughly investigated to elucidate the relationship between enhanced contaminants removal and activated sludge characteristics, microbial composition, and regulation of differentially expressed genes (DEGs). At 12 °C, irradiation with an ultrasound intensity of 9.68 W/L, an irradiation time of 10 min, and an interval time of 24 h led to significant increases in COD, NH-N, and TP removals with the rates of 93.

View Article and Find Full Text PDF

The Escherichia coli (E.coli) degrading glucose irradiated by ultrasound irradiation (20 W, 14 min) was investigated as the model system, the glucose degradation increased by 13 % while the E.coli proliferation decreased by 10 % after culture for 18 h.

View Article and Find Full Text PDF

Polyhydroxyalkanoate (PHA) producer selection is a key step in mixed culture (MC) production. This study focused on incompatibility between PHA storage and floc settling of MCs in the selection process. In a selector using fermented waste activated sludge as substrate under varying organic loading, average maximum PHA content obtained in batch assays increased by ∼ 22 wt% and biomass concentration increased by ∼ 34% with the increasing of organic loading.

View Article and Find Full Text PDF

In this study, a field-scale and pot experiment were performed to evaluate the remedial efficiency of Cd contaminated soil by tobacco and explore rhizosphere micro-characteristics under different cadmium levels, respectively. The results indicated that tobacco could remove 12.9 % of Cd from soil within a short growing period of 80 d.

View Article and Find Full Text PDF

Composite magnetic oxide at cow dung ash, nano-FeO@cow dung ash (nano-FeO@CDA), was used as catalytic material for the degradation of 2, 2'-methylenebis (4-methyl-6-tert-butylphenol) (AO 2246) in real biologically pretreated landfill leachate. The FeO@CDA composite exhibited catalytic ozonation activity and allowed material separation and magnetic recovery. The effects of several operating parameters including O concentration, catalyst dosage, temperature and scavengers were evaluated in parallel.

View Article and Find Full Text PDF

Organic contaminations and heavy metals in soils cause large harm to human and environment, which could be remedied by planting specific plants. The biochars produced by crop straws could provide substantial benefits as a soil amendment. In the present study, biochars based on wheat, corn, soybean, cotton and eggplant straws were produced.

View Article and Find Full Text PDF

Cow dung based activated carbon was successfully modified by FeO nanoparticles as the novel catalyst (FeO nanoparticles@CDAC) to improve the microbubble ozonation treating biologically pretreated coal gasification wastewater (BPCGW). When the pH, ozone dosage, ozone bubble diameter and catalyst dosage of the ozonation were 7, 0.4 L/min, 5 μm and 3 g/L, the chemical oxygen demand (COD) removal efficiency reached 74% and the ratio of biochemical oxygen demand in five days/COD (BOD/COD) increased from 0.

View Article and Find Full Text PDF

In this work, the biologically pre-treated leachate was subjected to catalytic micro-ozonation using cow-dung ash composites loaded with FeO nanoparticles (nano-FeO@CDA) as the catalyst. The optimal conditions used were nano-FeO@CDA dosage of 0.8 g/L, input ozone of 3.

View Article and Find Full Text PDF

FeO particles decorated Zr pillared bentonite (FeO/Zr-B) were successfully synthesized, which were used to treat stabilized landfill leachate by Fenton-like process. The organics removal and biodegradability were both significantly improved owing to good catalytic stability of the magnetically recoverable catalyst. With the catalyst dosage of 1.

View Article and Find Full Text PDF

A lab-scale membrane bioreactor (MBR) with intermittent aeration was operated to treat the reverse osmosis concentrate derived from coal gasification wastewater. Results showed intermittent aeration represented slight effect on organic matter reduction but significant effect on nitrite and nitrate reduction, with 6h aeration and 6h non-aeration, removal efficiencies of organic matter, chloride, sulfate, nitrite and nitrate reached 48.35%, 40.

View Article and Find Full Text PDF

Coupling of the Fe-C micro-electrolysis (IC-ME) into the up-flow anaerobic sludge blanket (UASB) was developed for enhanced Fischer-Tropsch wastewater treatment. The COD removal efficiency and methane production in R with IC-ME assisted both reached up to 80.6 ± 1.

View Article and Find Full Text PDF

A laboratory-scale intermittent aeration bioreactor was investigated to treat biologically pretreated coal gasification wastewater that was mainly composed of NH3-N and phenol. The results showed that increasing phenol loading had an adverse effect on NH3-N removal; the concentration in effluent at phenol loading of 40mgphenol/(L·day) was 7.3mg/L, 36.

View Article and Find Full Text PDF

The novel system of EBA (based on external circulation anaerobic (EC) process-biological enhanced (BE) process-anoxic/oxic (A/O) process) was applied to treat the British Gas/Lurgi coal gasification wastewater in Erdos, China. After a long time of commissioning, the EBA system represented a stable and highly efficient performance, particularly, the concentrations of COD, NH4(+)-N, total organic carbon, total nitrogen and volatile phenols in the final effluent reached 53, 0.3, 18, 106mg/L and not detected, respectively.

View Article and Find Full Text PDF

Laboratorial scale experiments were conducted to investigate a novel system three-dimensional catalytic electro-Fenton (3DCEF, catalyst of sewage sludge based activated carbon which loaded Fe3O4) integrating with membrane bioreactor (3DCEF-MBR) on advanced treatment of biologically pretreated coal gasification wastewater. The results indicated that 3DCEF-MBR represented high efficiencies in eliminating COD and total organic carbon, giving the maximum removal efficiencies of 80% and 75%, respectively. The integrated 3DCEF-MBR system significantly reduced the transmembrane pressure, giving 35% lower than conventional MBR after 30 days operation.

View Article and Find Full Text PDF

A novel integrated process with three-dimensional electro-Fenton (3D EF) and biological activated carbon (BAC) was employed in advanced treatment of biologically pretreated Lurgi coal gasification wastewater. SAC-Fe (sludge deserved activated carbon from sewage and iron sludge) and SAC (sludge deserved activated carbon) were used in 3D EF as catalytic particle electrodes (CPEs) and in BAC as carriers respectively. Results indicated that 3D EF with SAC-Fe as CPEs represented excellent pollutants and COLOR removals as well as biodegradability improvement.

View Article and Find Full Text PDF

Sewage sludge from a biological wastewater treatment plant was converted into sewage sludge based activated carbon (SBAC) with ZnCl2 as activation agent, which was used as a support for ferric oxides to form a catalyst (FeOx/SBAC) by a simple impregnation method. The new material was then used to improve the performance of Fenton oxidation of real biologically pretreated coal gasification wastewater (CGW). The results indicated that the prepared FeOx/SBAC significantly enhanced the pollutant removal performance in the Fenton process, so that the treated wastewater was more biodegradable and less toxic.

View Article and Find Full Text PDF

A laboratory-scale external circulation anaerobic reactor (ECAR) was developed to treat actual coal gasification wastewater. The external circulation ratio (R) was selected as the main operating variable for analysis. From the results, with the hydraulic retention time of 50h, pH > 8.

View Article and Find Full Text PDF

The potential for degradation of five nitrogenous heterocyclic compounds (NHCs), i.e., imidazole, pyridine, indole, quinoline, and carbazole, was investigated under anoxic conditions with acclimated activated sludge.

View Article and Find Full Text PDF

Laboratorial scale experiments were conducted to investigate a novel system integrating catalytic ultrasound oxidation (CUO) with membrane bioreactor (CUO-MBR) on advanced treatment of biologically pretreated coal gasification wastewater. Results indicated that CUO with catalyst of FeOx/SBAC (sewage sludge based activated carbon (SBAC) which loaded Fe oxides) represented high efficiencies in eliminating TOC as well as improving the biodegradability. The integrated CUO-MBR system with low energy intensity and high frequency was more effective in eliminating COD, BOD5, TOC and reducing transmembrane pressure than either conventional MBR or ultrasound oxidation integrated MBR.

View Article and Find Full Text PDF

The study examined the feasibility of using combined heterogeneous photocatalysis oxidation (HPO) and moving bed biofilm reactor (MBBR) process for advanced treatment of biologically pretreated coal gasification wastewater (CGW). The results indicated that the TOC removal efficiency was significantly improved in HPO. Gas chromatography-mass spectrometry (GC-MS) analysis indicated that the HPO could be employed to eliminate bio-refractory and toxic compounds.

View Article and Find Full Text PDF

Prediction of the biodegradability of organic pollutants is an ecologically desirable and economically feasible tool for estimating the environmental fate of chemicals. In this paper, stepwise multiple linear regression analysis method was applied to establish quantitative structure biodegradability relationship (QSBR) between the chemical structure and a novel biodegradation activity index (qmax) of 20 polycyclic aromatic hydrocarbons (PAHs). The frequency B3LYP/6-311+G(2df,p) calculations showed no imaginary values, implying that all the structures are minima on the potential energy surface.

View Article and Find Full Text PDF

Laboratorial scale experiments were conducted in order to investigate a novel system integrating heterogeneous Fenton oxidation (HFO) with anoxic moving bed biofilm reactor (ANMBBR) and biological aerated filter (BAF) process on advanced treatment of biologically pretreated coal gasification wastewater (CGW). The results indicated that HFO with the prepared catalyst (FeOx/SBAC, sewage sludge based activated carbon (SBAC) which loaded Fe oxides) played a key role in eliminating COD and COLOR as well as in improving the biodegradability of raw wastewater. The surface reaction and hydroxyl radicals (OH) oxidation were the mechanisms for FeOx/SBAC catalytic reaction.

View Article and Find Full Text PDF

A laboratory-scale membrane bioreactor hybrid powdered activated carbon (MBR–PAC) system was developed to treat coal gasification wastewater to enhance the COD, total phenols (TPh), NH4+ removals and migrate the membrane fouling. Since the MBR–PAC system operated with PAC dosage of 4 g L−1, the maximum removal efficiencies of COD, TPh and NH4+ reached 93%, 99% and 63%, respectively with the corresponding influent concentrations of 2.27 g L−1, 497 mg L−1 and 164 mg N L−1; the PAC extraction efficiencies of COD, TPh and NH4+ were 6%, 3% and 13%, respectively; the transmembrane pressure decreased 34% with PAC after 50 d operation.

View Article and Find Full Text PDF

A system combining granular activated carbon and powdered activated carbon technologies along with shortcut biological nitrogen removal (GAC-PACT-SBNR) was developed to enhance total nitrogen (TN) removal for anaerobically treated coal gasification wastewater with less need for external carbon resources. The TN removal efficiency in SBNR was significantly improved by introducing the effluent from the GAC process into SBNR during the anoxic stage, with removal percentage increasing from 43.8%-49.

View Article and Find Full Text PDF

An indigenous mixed culture of microorganisms, isolated from a full-scale coal gasification wastewater treatment plant, was used in degrading quinoline in presence of glucose as an alternative carbon source. The results showed that biodegradation kinetics of both quinoline and glucose could be described by first-order reaction kinetics model. It was also found that the biodegradation rate of quinoline was accelerated by the presence of glucose, while glucose degradation was inhibited by the presence of quinoline.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionl13a9767iv2l66de863otk6mibeaf9bd): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once