Publications by authors named "Shengyin Tang"

To innovate the design of water treatment technology for algal toxin removal, this research investigated the mechanisms of cyanotoxin microcystin-LR (MC-LR) removal by a coupled adsorption-biodegradation. Eight types of woody carbonaceous adsorbents with and without Sphingopyxis sp. m6, a MC-LR degrading bacterium, were tested for MC-LR removal in water.

View Article and Find Full Text PDF

Microcystin-LR (MC-LR), the most common algal toxin in freshwater, poses an escalating threat to safe drinking water. This study aims to develop an engineered biofiltration system for water treatment, employing a composite of poly(diallyldimethylammonium chloride)-biochar (PDDA-BC) as a filtration medium. The objective is to capture MC-LR selectively and quickly from water, enabling subsequent biodegradation of toxin by bacteria embedded on the composite.

View Article and Find Full Text PDF

This work presents an effective approach for manganese-doped AlO ceramic membrane (Mn-doped membrane) fouling control by in-situ confined HO cleaning in wastewater treatment. An Mn-doped membrane with 0.7 atomic percent Mn doping in the membrane layer was used in a membrane bioreactor with the aim to improve the catalytic activity toward oxidation of foulants by HO.

View Article and Find Full Text PDF

Membrane fouling is an obstacle impeding the wide applications of ceramic membranes and organics are responsible for most of the membrane fouling issues in wastewater treatment. In this study, Fenton cleaning strategy was firstly proposed to clean ceramic membrane fouling in wastewater treatment. Fe efficiently catalyzed fouling cleaning with HO (1.

View Article and Find Full Text PDF

Agricultural nonpoint pollution has been recognized as the main source of aquatic contaminants worldwide, such as inorganic nitrogen (ION) and heavy metals (HMs). It is an important challenge to simultaneously and efficiently immobilize soil ION and HMs in farmland. Herein, we present a polyporous Mg/Fe-layered double hydroxide and biochar composite (Mg/Fe-LDH@biochar) with the efficient coadsorption capacity of ION and HMs for the mitigation of agricultural nonpoint pollution toward aquatic systems.

View Article and Find Full Text PDF

The comparison of long-term ceramic membrane bioreactors (MBRs) without and with in-situ ozonation was investigated in this study in terms of membrane fouling, activated sludge, effluent quality and microbial community in wastewater treatment. The optimal dosage of in-situ ozonation for long-term MBR operation was firstly determined as 5 mg/L (0.66 mg-ozone/g-mixed liquor suspended solid (MLSS)) with the optimal filterability of mixed liquor.

View Article and Find Full Text PDF