The incomplete blocking of small-sized polysulfides by pore size and the effect on Li transport are generally neglected when the size-sieving effect is employed to suppress the shuttling of polysulfides. Herein, ion-selective modified layers with pore sizes equal to, greater than, and less than 0.8 nm, respectively, on the polypropylene separator are fabricated to obtain the preferable pore size for separation of polysulfides and Li.
View Article and Find Full Text PDFIt is undeniable that the dissolution of polysulfides is beneficial in speeding up the conversion rate of sulfur in electrochemical reactions. But it also brings the bothersome "shuttle effect". Therefore, if polysulfides can be retained on the cathode side, the efficient utilization of the polysulfides can be guaranteed to achieve the excellent performance of lithium-sulfur batteries.
View Article and Find Full Text PDFThe inverse finite element method (iFEM) is one of the most effective deformation reconstruction techniques for shape sensing, which is widely applied in structural health monitoring. The distribution of strain sensors affects the reconstruction accuracy of the structure in iFEM. This paper proposes a method to optimize the layout of sensors rationally.
View Article and Find Full Text PDFThermodynamically induced tensile stress in the perovskite film will lead to the formation of atomic vacancies, seriously destroying the photovoltaic efficiency stability of the perovskite solar cells (PSCs). Among them, cations and halide anions vacancies are unavoidable; these point vacancies are considered to be a major source of the ionic migration and perovskite degradation at the crystal boundary and surface of the perovskite films. Here, we use choline bromide to modify the perovskite film by occupying the atomic defects in the CsPbBr perovskite film.
View Article and Find Full Text PDF