Injection molding technology has been widely adopted to fabricate multifunctional polymeric components or structural parts for applications in fields such as automotives, electronics, packaging, aerospace, and many others [...
View Article and Find Full Text PDFMacromol Rapid Commun
November 2023
Lightweight polyimide foams (PIFs) with exceptional thermal resistance and compressive properties are fabricated by heating polyester ammonium salts (PEASs) which are prepared by copolymerizing 4, 4'-diaminobenzanilide (DABA), 4, 4'-diaminodiphenyl methane (MDA) and 3, 3', 4, 4'-benzophenone tetracarboxylic dianhydride (BTDA). Hydrogen bonds are formed between CONH and CO in the PI chains due to the addition of DABA and the melt viscosity of PEAS precursors increase with increasing content of DABA, which is advantageous to bind the foaming gases for cell expansion. The expansion ratio of PEAS precursors is increased from 633% to 1133% when the molar ratio of MDA/DABA is changed from 10:0 to 6:4.
View Article and Find Full Text PDFThe fabrication of self-healing elastomers with high thermal stability for use in extreme thermal conditions such as aerospace remains a major challenge. A strategy for preparing self-healing elastomers with stable covalent bonds and dynamic metal-ligand coordination interactions as crosslinking sites in polydimethylsiloxane (PDMS) is proposed. The added Fe (III) not only serves as the dynamic crosslinking point at room temperature which is crucial for self-healing performance, but also plays a role as free radical scavenging agent at high temperatures.
View Article and Find Full Text PDFThe ablative properties of epoxy-modified vinyl silicone rubber (EMVSR) composites containing hexaphenoxycyclotriphosphonitrile (HPCTP) have been systematically studied. The strength of the ablation char layer was greatly enhanced with the addition of HPCTP, which induced the formation of a more complete, denser, and thicker char during oxyacetylene ablation tests. Moreover, the HPCTP-containing EMVSR composites demonstrated lower thermal conductivity and pyrolysis rate when compared with those without HPTCP.
View Article and Find Full Text PDFHigh-performance and lightweight carbon aerogels (CAs) have attracted considerable attention in various fields such as electrochemistry, catalysis, adsorption, energy storage, and so on. However, finding an environmentally friendly and efficient preparation method and achieving a controllable performance of CAs are still a challenge. Herein, a series of anisotropic carbon/graphene composite aerogels were synthesized by unidirectional freezing of polyamic acid ammonium salt/graphene oxide (PAS/GO) suspension followed by lyophilization, thermal imidization, and carbonization.
View Article and Find Full Text PDFFor thermal protection materials (TPMs) which are used to protect space vehicles from extreme thermomechanical environments, the thermal conductivity of the original material and the char layer that has formed during ablation plays a significant role in determining the ablation performance. In order to investigate this, in this study, we introduced glass hollow microspheres (GHMs), phenolic hollow microspheres (PHMs), and acrylonitrile-methyl methacrylate copolymer hollow microspheres (AMHMs) into silicone rubber (SR), and the ablation performance of these composites was systematically studied. The thermogravimetric results showed that the residue yield of the SR composites was increased with the incorporation of the hollow microspheres.
View Article and Find Full Text PDFIn this work, the influences of alumina (AlO) particle size and loading concentration on the properties of injection molded polycarbonate (PC)/boron nitride (BN)/AlO composites were systematically studied. Results indicated that both in-plane and through-plane thermal conductivity of the ternary composites were significantly improved with the addition of spherical AlO particles. In addition, the thermal conductivity of polymer composites increased significantly with increasing AlO concentration and particle size, which were related to the following factors: (1) the presence of spherical AlO particles altered the orientation state of flaky BN fillers that were in close proximity to AlO particles (as confirmed by SEM observations and XRD analysis), which was believed crucial to improving the through-plane thermal conductivity of injection molded samples; (2) the presence of AlO particles increased the filler packing density by bridging the uniformly distributed BN fillers within PC substrate, thereby leading to a significant enhancement of thermal conductivity.
View Article and Find Full Text PDFLightweight carbon foams with excellent electromagnetic interference (EMI) shielding performance were prepared by carbonization process, using isocyanate-based polyimide foams as carbon precursors. The influence of carbonization temperature and graphene-doping on the morphological, electrical and EMI shielding effectiveness (SE) of corresponding carbon foams was studied in detail. Results showed that the addition of graphene was beneficial to the improvement of electrical conductivity and EMI shielding performance of carbon foams.
View Article and Find Full Text PDFIn this work, a series of isotactic polypropylene/poly(ethylene terephthalate) (iPP/PET) samples were prepared by microinjection molding (μIM) and mini-injection molding (IM). The properties of the samples were investigated in detail by differential scanning calorimetry (DSC), Wide-Angle X-ray Diffraction (WAXD), Polarized light microscope (PLM) and scanning electron microscopy (SEM). Results showed that the difference in thermomechanical history between both processing methods leads to the formation of different microstructures in corresponding iPP/PET moldings.
View Article and Find Full Text PDFThe effect of hybrid carbon fillers of multi-walled carbon nanotubes (CNT) and carbon black (CB) on the electrical and morphological properties of polystyrene (PS) nanocomposites were systematically investigated in microinjection molding (μIM). The polymer nanocomposites with three different filler concentrations (i.e.
View Article and Find Full Text PDFWithdrawal from prescribed opioids results in increased pain sensitivity, which prolongs the treatment. This pain sensitivity is attributed to neuroplastic changes that converge at the spinal cord dorsal horn. We have recently reported that repeated morphine administration triggers an insertion of GluA2-lacking (Ca(2+)-permeable) α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPAR) in the hippocampus.
View Article and Find Full Text PDFThere is pharmacological evidence that group II and III metabotropic glutamate receptors (mGluRs) function as activity-dependent autoreceptors, inhibiting transmission in supraspinal sites. These receptors are expressed by peripheral nociceptors. We investigated whether mGluRs function as activity-dependent autoreceptors inhibiting pain transmission to the rat CNS, particularly transient receptor potential vanilloid 1 (TRPV1)-induced activity.
View Article and Find Full Text PDFTransient receptor potential vanilloid 1 (TRPV1) receptors are critical to nociceptive processing. Understanding how these receptors are modulated gives insight to potential therapies for pain. We demonstrate using double labeling immunohistochemistry that Group II metabotropic glutamate receptors (mGluRs) are co-expressed with TRPV1 on rat dorsal root ganglion (DRG) cells.
View Article and Find Full Text PDFGalanin (GAL) is a neuropeptide involved in pain transmission. Intraplantar GAL at low doses enhances capsaicin (CAP)-induced pain behaviors in rat, suggesting an excitatory role for GAL under acute inflammatory conditions. The mechanisms underlying this pro-nociceptive action have not yet been elucidated.
View Article and Find Full Text PDFActivation of peripheral somatostatin receptors (SSTRs) inhibits sensitization of nociceptors, thus having a short term or phasic effect [Pain 90 (2001) 233] as well as maintaining a tonic inhibitory control over nociceptors [J Neurosci 21 (2001) 4042]. The present study provides several lines of evidence that an important mechanism underlying SSTR modulation of nociceptors is regulation of the transient receptor potential vanilloid 1 ion channel (TRPV1, formerly the VR1 receptor). Double labeling of L5 dorsal root ganglion cells demonstrates that approximately 60% of SSTR2a-labeled cells are positive for TRPV1.
View Article and Find Full Text PDFWe investigated the peripheral function of galanin (GAL) in capsaicin (CAP)-induced inflammatory pain. Intraplantar GAL (0.1 ng/microl) alone does not produce nociceptive behaviors.
View Article and Find Full Text PDFSomatostatin (SST) is in primary afferent neurons and reduces vascular and nociceptive components of inflammation. SST receptor (SSTR) agonists provide analgesia following intrathecal or epidural administration in humans, but neurotoxicity in the central nervous system (CNS) has been reported in experimental animals. With the rationale that targeting peripheral SSTRs would provide effective analgesia while avoiding CNS side effects, the goals of the present study are to investigate the presence of SSTRs on peripheral primary afferent fibers and determine the behavioral and physiological effects of the SST agonist octreotide (OCT) on formalin-induced nociception and bradykinin-induced primary afferent excitation and sensitization in the rat.
View Article and Find Full Text PDF