Publications by authors named "Shengsheng Sun"

Article Synopsis
  • The study looked at how chromium particles in contaminated soil affect the growth of rice plants and how much chromium the rice absorbs.
  • Researchers found that a significant amount of chromium was attached to tiny particles in the soil, which helped move it around.
  • They discovered that the presence of certain materials and conditions in the soil influenced how much chromium ended up in the rice grains, showing how important these factors are in understanding pollution in paddy fields.
View Article and Find Full Text PDF

Chromium (Cr) soil contamination is a critical global environmental concern, with hexavalent chromium (Cr[VI]) being especially perilous due to its high mobility, bioavailability, and phytotoxicity. This poses a significant threat to the cultivation of crops, particularly rice, where the mechanisms of Cr(VI) absorption remain largely unexplored. This study uncovered a competitive interaction between Cr(VI) and essential nutrients-sulfate and phosphate during the uptake process.

View Article and Find Full Text PDF

Chromite oxidative dissolution has been recognized as an important process leading to elevated Cr(VI) in soil and groundwater. Under natural conditions, direct oxidation of Cr(III) by O is very unfavorable, and a critical determinant of Cr(VI) generation in soil and groundwater is the interaction between chromite and Mn(II) or Mn(III/IV) oxides. Here, the effects of Mn(II) or Mn(IV) on the oxidative dissolution of chromite were investigated at pH values of 5, 7 and 9 during anoxic, oxic and anoxic-oxic processes.

View Article and Find Full Text PDF

High levels of Cr(III) are hosted in Fe (oxyhydr)oxides in soils derived on (ultra)mafic rocks, which can pose potential risks to the environment. Organic acids can cause the solubilization of Fe (oxyhydr)oxides and the release of Cr(III). However, the release behaviors of Cr(III) from Fe (oxyhydr)oxides by organic acids and its main factors remain unclear.

View Article and Find Full Text PDF

Chromium (Cr) is an expression toxic metal and is seriously released into the soil environment due to its extensive use and mining. Basalt is an important Cr reservoir in the terrestrial environment. Cr in paddy soil can be enriched by chemical weathering.

View Article and Find Full Text PDF

Chromium (Cr) accumulating in soil caused serious pollution to cultivated land. At present, nano zero-valent iron (nZVI) is considered to be a promising remediation material for Cr-contaminated soil. However, the nZVI impact on the behavior of Cr in the soil-rice system under high natural geological background value remains unknown.

View Article and Find Full Text PDF

Hexavalent chromium (Cr(VI)) is more readily taken up by plants than trivalent chromium (Cr(III)) due to its similar chemical structure to phosphate and sulfate. In paddy soils, Cr(VI) of natural origin are mainly produced from Cr(III) oxidized by O and Mn(III/IV) oxides, which are affected by rice radial oxygen loss (ROL) and Mn(II)-oxidizing microorganisms (MOM). However, little is known about the effect of ROL and Mn abundance on rice Cr uptake.

View Article and Find Full Text PDF

Cr(VI) from oxidation of geogenic Cr(III) minerals is gradually becoming the primary source of Cr(VI) in soils and groundwater instead of direct emissions. Thermodynamically, natural oxidants of Cr(III) are limited to O and Mn oxides. The oxidation of Cr(III) occurs commonly in oxic soils but the difference in the oxidative dissolution of Cr(III) by Mn oxides in different redox soils (especially under anoxic conditions) is not fully understood and field evidence is lacking.

View Article and Find Full Text PDF

Basalt-derived soils are widespread worldwide. Such soils contain high levels of heavy metals like chromium (Cr), which is a serious environmental concern. However, little is known regarding the enrichment and speciation of Cr during the basalt weathering process.

View Article and Find Full Text PDF

Chromium (Cr) is a toxic heavy metal that is heavily discharged into the soil environment due to its widespread use and mining. High Cr levels may pose toxic hazards to plants, animals and humans, and thus have attracted global attention. Recently, much progress has been made in elucidating the mechanisms of Cr uptake, transport and accumulation in soil-plant systems, aiming to reduce the toxicity and ecological risk of Cr in soil; however, these topics have not been critically reviewed and summarised to date.

View Article and Find Full Text PDF

Phytomining technology cultivates hyperaccumulator plants on heavy metal contaminated soils, followed by biomass harvesting and incineration to recover valuable metals, offering an opportunity for resource recycling and soil remediation. Large areas of ultramafic soils, naturally rich in nickel (Ni), are present in numerous places around the world. As an environmentally friendly and cost-effective soil remediation technology, phytomining has a broad application prospect in such areas and thus has attracted great attention from global researchers.

View Article and Find Full Text PDF

Efficient confining of photons into subwavelength scale is of great importance in both fundamental researches and engineering applications, of which one major challenge lies in the lack of effective and reliable on-chip nanofabrication techniques. Here we demonstrate the efficient subwavelength light focusing with carefully engineered pyramidal structures fabricated by direct laser writing and surface metallization. The important effects of the geometry and symmetry are investigated.

View Article and Find Full Text PDF