Publications by authors named "Shengsheng Cai"

Background: Coronary artery bypass grafting (CABG) remains the preferred treatment for complex multi-vessel coronary artery disease, offering substantial long-term benefits. Non-cardiac comorbidities such as frailty may significantly affect the outcomes of this procedure. However, the exact impact of frailty on CABG outcomes remains unclear, particularly given its exclusion from many pivotal revascularization trials.

View Article and Find Full Text PDF

Introduction: Mitral regurgitation (MR) is the most common valvular heart disorder, with a morbidity rate of 2.5%. While echocardiography is commonly used in assessing MR, it has many limitations, especially for large-scale MR screening.

View Article and Find Full Text PDF

Background: This review assessed if prognostic nutritional index (PNI) can predict mortality and major adverse cardiac events (MACE) in coronary artery disease (CAD) patients.

Methods: PubMed, Web of Science, Scopus, and Embase were searched up to 1st November 2022 for all types of studies reporting adjusted associations between PNI and mortality or MACE in CAD patients. A random-effect meta-analysis was conducted for PNI as categorical or continuous variable.

View Article and Find Full Text PDF

Cardiopulmonary auscultation is promising to get smart due to the emerging of electronic stethoscopes. Cardiac and lung sounds often appear mixed at both time and frequency domain, hence deteriorating the auscultation quality and the further diagnosis performance. The conventional cardiopulmonary sound separation methods may be challenged by the diversity in cardiac/lung sounds.

View Article and Find Full Text PDF

The considerable development of carrier-free nanodrugs has been achieved due to their high drug-loading capability, simple preparation method, and offering "all-in-one" functional platform features. However, the native defects of carrier-free nanodrugs limit their delivery and release behavior throughout the journey, which significantly compromise the therapeutic efficacy and hinder their further development in cancer treatment. In this review, we summarized and discussed the recent strategies to enhance drug delivery and release of carrier-free nanodrugs for improved cancer therapy, including optimizing the intrinsic physicochemical properties and external modification.

View Article and Find Full Text PDF

Unsatisfactory drug loading capability, potential toxicity of the inert carrier and the limited therapeutic effect of a single chemotherapy drug are all vital inhibitory factors of carrier-assisted drug delivery systems for chemotherapy. To address the above obstacles, a series of carrier-free nanoplatforms self-assembled by dual-drug conjugates was constructed to reinforce chemotherapy against tumors by simultaneously disrupting intratumoral DNA activity and inhibiting mitochondria function. In this nanoplatform, the mitochondria-targeting small-molecular drug, α-tocopheryl succinate (TOS), firstly self-assembled into nanoparticles, which then were used as the carrier to conjugate cisplatin (CDDP).

View Article and Find Full Text PDF

Nanoparticle-based drug delivery faces challenges from the imprecise targeted delivery and the low bioavailability of drugs due to complex biological barriers. Here, we designed cascade-targeting, dual drug-loaded, core-shell nanoparticles (DLTPT) consisting of CD44-targeting hyaluronic acid shells decorated with doxorubicin (HA-DOX) and mitochondria-targeting triphenylphosphonium derivative nanoparticle cores loaded with lonidamine (LND) dimers (LTPT). DLTPT displayed prolonged blood circulation time and efficiently accumulated at the tumor site due to the tumor-homing effect and negatively charged hyaluronic acid.

View Article and Find Full Text PDF

Challenges associated with low-drug-loading capacity, lack of active targeting of tumor cells and unspecific drug release of nanocarriers synchronously plague the success of cancer therapy. Herein, we constructed active-targeting, redox-activated polymeric micelles (HPGssML) self-assembled aptamer-decorated, amphiphilic biodegradable poly (benzyl malolactonate-co-ε-caprolactone) copolymer with disulfide linkage and π-conjugated moieties. HPGssML with a homogenous spherical shape and nanosized diameter (∼150 nm) formed a low critical micellar concentration (10mg/mL), suggesting good stability of polymeric micelles.

View Article and Find Full Text PDF

Molecular targeted-photodynamic combinational therapy is a promising strategy to enhance antitumor effects; meanwhile, current nanocarriers face challenges of limited selective delivery and release of therapeutic agents to specific tumor sites, which significantly compromises their therapeutic efficacy. Herein, we report active-targeting, enzyme- and ROS-dual responsive nanoparticles (HPGBCA) consisting of CD-targeting hyaluronic acid (HA) shells and afatinib (AFT)-loaded, ROS-sensitive poly(l-lysine)-conjugated chlorin e6 (Ce6) derivative nanoparticle cores (PGBCA). HPGBCA can actively carry AFT and Ce6 specifically to tumor cells due to the negatively charged HA and CD-mediated active targeting.

View Article and Find Full Text PDF