More than half of the world's population relies on rice as their staple food for three meals a day. From a dietary perspective, rice can be considered the most important grain in the world. With the continuous improvement of people's living standards, the demand for food has gradually shifted from being full and eating well to being nutritious and healthy.
View Article and Find Full Text PDFThe catalytic valorisation of biomass to afford synthetically useful small molecules is essential for sustainable biorefinery processes. Herein, we present a mild cascaded electrochemical protocol for converting furoic acid, a common biomass-derived feedstock, into a versatile platform chemical, gamma-butyrolactone. In the platinum(+)|nickel(-) electrode paired undivided cell, furoic acid is electrochemically oxidised with 84.
View Article and Find Full Text PDFCells respond to DNA double-strand breaks by initiating DSB repair and ensuring a cell cycle checkpoint. The primary responder to DSB repair is non-homologous end joining, which is an error-prone repair pathway. However, when DSBs are generated after DNA replication in the G2 phase of the cell cycle, a second DSB repair pathway, homologous recombination, can come into action.
View Article and Find Full Text PDFOral cancers are easily accessible compared to many other cancers. Nevertheless, oral cancer is often diagnosed late, resulting in a poor prognosis. Most oral cancers are squamous cell carcinomas that predominantly develop from cell hyperplasias and dysplasias.
View Article and Find Full Text PDFJ Antimicrob Chemother
December 2016
Objectives: The increasing threat of drug-resistant bacteria establishes a continuing need for the development of new strategies to fight infection. We examine the inhibition of the essential single-stranded DNA-binding proteins (SSBs) SSBA and SSBB as a potential antimicrobial therapy due to their importance in DNA replication, activating the SOS response and promoting competence-based mechanisms of resistance by incorporating new DNA.
Methods: Purified recombinant SSBs from Gram-positive (Staphylococcus aureus and Bacillus anthracis) and Gram-negative (Escherichia coli and Francisella tularensis) bacteria were assessed in a high-throughput screen for inhibition of duplex DNA unwinding by small molecule inhibitors.
Maintenance of genome integrity is critical for proper cell growth. This occurs through accurate DNA replication and repair of DNA lesions. A key factor involved in both DNA replication and the DNA damage response is the heterotrimeric single-stranded DNA (ssDNA) binding complex Replication Protein A (RPA).
View Article and Find Full Text PDFReplication protein A (RPA) is the main human single-stranded DNA (ssDNA)-binding protein. It is essential for cellular DNA metabolism and has important functions in human cell cycle and DNA damage signaling. RPA is indispensable for accurate homologous recombination (HR)-based DNA double-strand break (DSB) repair and its activity is regulated by phosphorylation and other post-translational modifications.
View Article and Find Full Text PDFThe ATR/Chk1 pathway is a critical surveillance network that maintains genomic integrity during DNA replication by stabilizing the replication forks during normal replication to avoid replication stress. One of the many differences between normal cells and cancer cells is the amount of replication stress that occurs during replication. Cancer cells with activated oncogenes generate increased levels of replication stress.
View Article and Find Full Text PDFGenotoxins and other factors cause replication stress that activate the DNA damage response (DDR), comprising checkpoint and repair systems. The DDR suppresses cancer by promoting genome stability, and it regulates tumor resistance to chemo- and radiotherapy. Three members of the phosphatidylinositol 3-kinase-related kinase (PIKK) family, ATM, ATR, and DNA-PK, are important DDR proteins.
View Article and Find Full Text PDFReplication protein A (RPA), essential for DNA replication, repair and DNA damage signalling, possesses six ssDNA-binding domains (DBDs), including DBD-F on the N-terminus of the largest subunit, RPA70. This domain functions as a binding site for p53 and other DNA damage and repair proteins that contain amphipathic alpha helical domains. Here, we demonstrate direct binding of both ssDNA and the transactivation domain 2 of p53 (p53TAD2) to DBD-F, as well as DBD-F-directed dsDNA strand separation by RPA, all of which are inhibited by fumaropimaric acid (FPA).
View Article and Find Full Text PDFDNA damage encountered by DNA replication forks poses risks of genome destabilization, a precursor to carcinogenesis. Damage checkpoint systems cause cell cycle arrest, promote repair and induce programed cell death when damage is severe. Checkpoints are critical parts of the DNA damage response network that act to suppress cancer.
View Article and Find Full Text PDFThe pharmacological suppression of the DNA damage response and DNA repair can increase the therapeutic indices of conventional chemotherapeutics. Replication Protein A (RPA), the major single-stranded DNA binding protein in eukaryotes, is required for DNA replication, DNA repair, DNA recombination, and DNA damage response signaling. Through the use of high-throughput screening of 1500 compounds, we have identified a small molecule inhibitor, 15-carboxy-13-isopropylatis-13-ene-17,18-dioic acid (NSC15520), that inhibited both the binding of Rad9-GST and p53-GST fusion proteins to the RPA N-terminal DNA binding domain (DBD), interactions that are essential for robust DNA damage signaling.
View Article and Find Full Text PDF