Publications by authors named "Shengqian Gao"

Article Synopsis
  • Optical vortices with orbital angular momentum (OAM) are increasingly important in optical communications, providing an extra dimension for scaling capacity.
  • The study presents a new optical vortex generator built on a silicon platform using a direct-binary search algorithm, achieving a compact design and wide operational bandwidth.
  • This generator supports various polarization and high-order OAM modes with low crosstalk, indicating its potential for multi-dimensional optical communication applications.
View Article and Find Full Text PDF

Optical modulators were, are, and will continue to be the underpinning devices for optical transceivers at all levels of the optical networks. Recently, heterogeneously integrated silicon and lithium niobate (Si/LN) optical modulators have demonstrated attractive overall performance in terms of optical loss, drive voltage, and modulation bandwidth. However, due to the moderate Pockels coefficient of lithium niobate, the device length of the Si/LN modulator is still relatively long for low-drive-voltage operation.

View Article and Find Full Text PDF

We demonstrate a high-performance reconfigurable bandpass filter implemented by cascaded Sagnac loop mirror (SLM)-based coupled resonator optical waveguides (CROWs) on the silicon-on-insulator platform. By dynamic thermal tuning of the reflectivity in each SLM, the proposed filter can achieve simultaneous 3 dB bandwidth tuning from 8.50 to 20.

View Article and Find Full Text PDF

Orbital angular momentum (OAM), one fundamental property of light, has been of great interest over the past decades. An ideal OAM generator, fully compatible with existing physical dimensions (wavelength and polarization) of light, would offer the distinct features of broadband, polarization diversity, and ultra-compact footprint. Here, we propose, design, fabricate, and demonstrate an ultra-compact chip-scale broadband polarization diversity OAM generator on a silicon platform with a 3.

View Article and Find Full Text PDF

Orbital angular momentum (OAM) multiplexing has emerged as an important method to increase the communication capacities in future optical information technologies. In this work, we demonstrate a silicon integrated OAM (de)multiplexer with a very simple structure. By simply tapping the evanescent wave of two different whispering gallery modes rotating inside a multimodal micro-ring resonator, four in-plane waveguide modes are converted to four free-space vector OAM beams with high mode purity.

View Article and Find Full Text PDF

Compact and broadband manipulation of spatial modes is important in applications exploiting the space domain of light waves. Here, we demonstrate chip-scale generation and synthesization of ultrabroadband orbital angular momentum (OAM) modes (twisted light) on a silicon platform. By introducing a subwavelength holographic fork grating on top of a silicon waveguide, the in-plane guided mode is converted to the free-space OAM mode.

View Article and Find Full Text PDF

We design and fabricate a low-loss silicon photonic two-dimensional grating coupler that serves to couple light between standard single-mode fibers and single-mode waveguides in the silicon-on-insulator platform and to split both orthogonal polarization states. The efficiency of the fabricated device is enhanced by a backside metal mirror and reaches a record value of -1.8  dB with a 1 dB bandwidth of 32 nm around 1550 nm.

View Article and Find Full Text PDF

A compact, high-efficiency grating coupler is demonstrated for interfacing a silicon waveguide and a perfectly-vertical fiber at O-band. The grating lies on a tilted silicon membrane for minimizing the reflections. Circular grating lines are adopted to shorten the overall device length to about 60μm.

View Article and Find Full Text PDF

We propose and demonstrate an on-chip coupling resonant system to generate electromagnetically induced transparency (EIT)-like effect and Fano resonance on silicon platform. It is composed of a microring resonator (MRR) and two cascaded Sagnac-loop mirrors (SLMs) assisted Fabry-Perot (FP) cavity on silicon-on-insulator. According to the coupling conditions of the MRR, two cases are studied theoretically.

View Article and Find Full Text PDF

A novel concept to generate a linear chirped microwave signal is proposed and experimentally demonstrated. The frequency to time mapping method is employed, where the photonic crystal waveguide Mach-Zehnder interferometer structure acts as the spectral shaper thanks to the slow light effect. By optimizing the structural parameters of the photonic crystal waveguide, a linear chirped microwave signal with the time-bandwidth product of about 30 is experimentally obtained.

View Article and Find Full Text PDF

A simple and ultra-compact integrated optical vortex beam receiver device is presented. The device is based on the coupling between the optical vortex modes and whispering gallery modes in a micro-ring resonator via embedded angular gratings, which provides the selective reception of optical vortex modes with definitive total angular momentum (summation of spin and orbital angular momentum) through the phase matching condition in the coupling process. Experimental characterization confirms the correct detection of the total angular momentum carried by the vortex beams incident on the device.

View Article and Find Full Text PDF