Publications by authors named "Shengqi Yin"

Introduction: The efficacy of radiotherapy in colorectal cancer (CRC) is often limited by radiation resistance. Ataxia telangiectasia mutated (ATM) is well known for its role in repairing double-strand DNA breaks within the DNA damage response (DDR) pathway. However, whether ATM mediates other mechanisms contributing to radiation resistance remains insufficiently investigated.

View Article and Find Full Text PDF

Here, we present a protocol for generating the lung cancer cell line, LLC1-BMT5, with highly brain metastatic tropism through multiple rounds of in vivo selection. We describe steps for establishing the brain metastases (BrMs) mouse model through intracardiac injection of cancer cells. We then detail procedures for obtaining brain metastatic subpopulations, in vivo selection of LLC1-BMT5 cells, and validating metastatic potential.

View Article and Find Full Text PDF

One of the primary causes of urban atmospheric particulate matter, which is harmful to human health in addition to affecting air quality and atmospheric visibility, is road dust. This study used online monitoring equipment to examine the characteristics of road dust emissions, the effects of temperature, humidity, and wind speed on road dust, as well as the correlation between road and high-space particulate matter concentrations. A section of a real road in Jinhua City, South China, was chosen for the study.

View Article and Find Full Text PDF

Brain metastases (BrMs) are the leading cause of death in patients with solid cancers. BrMs exhibit a highly immunosuppressive milieu and poor response to immunotherapies; however, the underlying mechanism remains largely unclear. Here, we show that upregulation of HSP47 in tumor cells drives metastatic colonization and outgrowth in the brain by creating an immunosuppressive microenvironment.

View Article and Find Full Text PDF

Integration of metasurfaces and SOI (silicon-on-insulator) chips can leverage the advantages of both metamaterials and silicon photonics, enabling novel light shaping functionalities in planar, compact devices that are compatible with CMOS (complementary metal-oxide-semiconductor) production. To facilitate light extraction from a two-dimensional metasurface vertically into free space, the established approach is to use a wide waveguide. However, the multi-modal feature of such wide waveguides can render the device vulnerable to mode distortion.

View Article and Find Full Text PDF

All-dielectric, phase-gradient metasurfaces manipulate light via a judiciously designed planar distribution of high and low refractive indices. In the established design approaches, the high-index elements play a dominant role, while the electromagnetic field existing between these elements is routinely viewed as either an incidental by-product or detrimental crosstalk. Here we propose an alternative approach that concentrates on exploring the low-index materials for wavefront shaping.

View Article and Find Full Text PDF

Controllable conversion between propagating light waves and surface waves (SWs) has recently attracted significant research interests. This paper demonstrates, via numerical simulation, for the first time all-dielectric SW converters that possess a tunable and directional SW conversion efficiency. The SW converters contain multiple metagratings of Si pillars embedded in a deformable substrate.

View Article and Find Full Text PDF

Nanophotonic particle manipulation exploits unique light shaping capabilities of nanophotonic devices to trap, guide, rotate and propel particles in microfluidic channels. Recent introduction of metalens into microfluidics research demonstrates the new capability of using nanophotonics devices for far-field optical manipulation. In this work we demonstrate, via numerical simulation, the first tunable metalens tweezers that function under dual-beam illumination.

View Article and Find Full Text PDF

Plasmonic nanostructures hold great promise for enabling advanced optical manipulation of nanoparticles in microfluidic channels, resulting from the generation of strong and controllable light focal points at the nanoscale. A primary remaining challenge in the current integration of plasmonics and microfluidics is to transport trapped nanoparticles along designated routes. Here we demonstrate through numerical simulation a plasmonic nanoparticle router that can trap and route a nanoparticle in a microfluidic channel with a continuous fluidic flow.

View Article and Find Full Text PDF