Plants (Basel)
October 2024
The root systems of vegetation significantly contribute to enhancing slope stability. The shear strength of soil-root systems is a crucial parameter for assessing slope stability. This study focuses on six types of vegetation in the Yellow River Basin of China (woodland: and ; shrubland: and ; grassland: and ), employing in situ shear tests and the Wu-Waldron model (Wu model) to investigate the shear strength of soil-root systems.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
June 2024
A crucial physiological indicator known as water use efficiency (WUE) (Foley et al.) assesses the trade-off between water loss and carbon uptake. The carbon and water coupling mechanisms, energy balance, and hydrological cycle processes in the ecosystem are impacted by climate change, vegetation dynamics, and land use change.
View Article and Find Full Text PDFThe Chinese government has implemented a series of ecological restoration projects in the Loess Plateau (LP), and the surface cover changed dramatically, impacting the ecosystem services (ESs) greatly. In this study, we used K-means clustering to classify the land use structures (LUSs) of the LP from 1990 to 2015 at the small watershed scale, and investigated the effects of LUS on water supply (WS), soil conservation (SC), and carbon sequestration (CS, expressed as NPP) with constraint lines. The values of WS and SC were obtained from the InVEST simulation, validated by the hydrographic station data.
View Article and Find Full Text PDFIn recent years, urban flood disasters caused by sudden heavy rains have become increasingly severe, posing a serious threat to urban public infrastructure and the life and property safety of residents. Rapid simulation and prediction of urban rain-flood events can provide timely decision-making reference for urban flood control and disaster reduction. The complex and arduous calibration process of urban rain-flood models has been identified as a major obstacle affecting the efficiency and accuracy of simulation and prediction.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
July 2014
The distribution of fine roots of Pinus tabuliformis, Populus tomentosa, Prunus armeniaca, Robinia pseudoacacia, Hippophae rhamnoides, and Caragana korshinskii was investigated by using soil core method and the fine root was defined as root with diameter less than 2 mm. The soil moisture and soil properties were measured. The results showed that in the horizontal direction, the distribution of fine root biomass of P.
View Article and Find Full Text PDFTaking the Pinus tabulaeformis plantation in the Anjiagou catchment on Longzhong Loess Plateau as test object, an observation was made on the characteristics of throughfall, stemflow, interception, and canopy structure of P. tabulaeformi during its growth season (from May to September) in 2011. Based on the observed data, the revised Gash analytical model was adopted to simulate the canopy interception, aimed to understand the ecological hydrological processes of Pinus tabulaeformis plantation and related mechanisms.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
September 2012
From May to October 2011, an investigation was conducted on the effects of rainfall and its intensity on the canopy interception, throughfall, and stemflow of Caragana korshinskii and Hippophae rhamnoides, the main shrub species commonly planted to stabilize soil and water in the Anjiagou catchment of Loess Plateau. A total of 47 rainfall events were observed, most of which were featured with low intensity, and the total amount and average intensity of the rainfalls were 208.9 mm and 2.
View Article and Find Full Text PDF