Front Cell Dev Biol
December 2023
Vitiligo is a skin pigmentation disorder caused by melanocyte damage or abnormal function. Reac-tive oxygen species Reactive oxygen species can cause oxidative stress damage to melanocytes, which in turn induces vitiligo. Traditional treatments such as phototherapy, drugs, and other methods of treatment are long and result in frequent recurrences.
View Article and Find Full Text PDFSpinal Cord Injury (SCI), with its morbidity characteristics of high disability rate and high mortality rate, is a disease that is highly destructive to both the physiology and psychology of the patient, and for which there is still a lack of effective treatment. Following spinal cord injury, a cascade of secondary injury reactions known as ischemia, peripheral inflammatory cell infiltration, oxidative stress, etc. create a microenvironment that is unfavorable to neural recovery and ultimately results in apoptosis and necrosis of neurons and glial cells.
View Article and Find Full Text PDFWhen exposed to various microenvironmental stimuli, macrophages are highly plastic and primarily polarized into the pro-inflammatory M1-type and the anti-inflammatory M2-type, both of which perform almost entirely opposing functions. Due to this characteristic, macrophages perform different functions at different stages of immunity and inflammation. Inflammatory immune skin diseases usually show an imbalance in the M1/M2 macrophage ratio, and altering the macrophage polarization phenotype can either make the symptoms worse or better.
View Article and Find Full Text PDFSpinal Cord Injury (SCI) is a devastating neurological disorder comprising primary mechanical injury and secondary inflammatory response-mediated injury for which an effective treatment is still unavailable. It is well known that secondary inflammatory responses are a significant cause of difficulties in neurological recovery. An immune imbalance between M1/M2 macrophages at the sites of injury is involved in developing and progressing the secondary inflammatory response.
View Article and Find Full Text PDFRecent studies have revealed that activated astrocytes (AS) are divided into two distinct types, termed A1 and A2. A2 astrocytes are neuroprotective and promote tissue repair and regeneration following spinal cord injury. Whereas, the specific mechanism for the formation of the A2 phenotype remains unclear.
View Article and Find Full Text PDFThe physiological processes of cell growth, proliferation, differentiation, and apoptosis are closely related to STAT3, and it has been demonstrated that aberrant STAT3 expression has an impact on the onset and progression of a number of inflammatory immunological disorders, fibrotic diseases, and malignancies. In order to produce the necessary biological effects, macrophages (M0) can be polarized into pro-inflammatory (M1) and anti-inflammatory (M2) types in response to various microenvironmental stimuli. STAT3 signaling is involved in macrophage polarization, and the research of the effect of STAT3 on macrophage polarization has gained attention in recent years.
View Article and Find Full Text PDFSpinal cord injury (SCI) is a catastrophic event which is still without adequate therapies. Neuroinflammation is the main pathogenesis of secondary damage post-SCI, leading to tissue loss and neurological dysfunction. Previous studies have shown that microglia and astrocytes are the major immune cells in the central nervous system (CNS) and play a crucial role in modulating neuroinflammatory responses.
View Article and Find Full Text PDFSpinal cord injury (SCI) is a catastrophic condition with high morbidity and mortality that still lacks effective therapeutic strategies. It is well known that the most important stage in SCI pathogenesis is secondary injury, and among the involved mechanisms, the inflammatory cascade is the main contributor and directly influences neurological function recovery. In recent years, increasing evidence has shown that mesenchymal stem cells (MSCs) transplantation is a promising immunomodulatory strategy.
View Article and Find Full Text PDFTransected axons are unable to regenerate after spinal cord injury (SCI). Glial scar is thought to be responsible for this failure. Regulating the formation of glial scar post-SCI may contribute to axonal regrow.
View Article and Find Full Text PDF