Agricultural drought (AD) is the main environmental factor affecting vegetation productivity (VP) in the Yellow River Basin (YRB). In recent years, the nonlinear effects of AD on VP in the YRB have attracted much attention. However, it is still unclear whether fluctuating AD will have complex nonlinear effects on VP in the YRB, and there are scant previous studies at large scale on whether there is a threshold for nonlinear effects of AD on VP in the YRB.
View Article and Find Full Text PDFEcological protection and high-quality development of the Yellow River Basin (YRB) are major national strategies in China. Agricultural drought (AD) is one of the most important stress factors of the ecological security of the YRB. Currently, there is a lack of exploration of the spatiotemporal evolution of AD in the YRB under different climatic zones and vegetation types, and the mechanisms by the driving factors influence AD remain unclear.
View Article and Find Full Text PDFSensors (Basel)
August 2022
Interferogram filtering is an essential step in processing data from interferometric synthetic aperture radar (InSAR), which greatly improves the accuracy of terrain reconstruction and deformation monitoring. Most traditional interferogram filtering methods achieve noise suppression and detail preservation through morphological estimation based on the statistical properties of the interferogram in the spatial or frequency domain. However, as the interferogram's spatial distribution is diverse and complex, traditional filtering methods struggle to adapt to different distribution and noise conditions and cannot handle detail preservation and noise suppression simultaneously.
View Article and Find Full Text PDFMeteorological drought is one of the driving forces behind agricultural drought. The response of agricultural drought to meteorological drought remains poorly understood under different climatic zones and vegetation types in Northwest China (NWC). Furthermore, the contribution of climate factors and human activities to agricultural drought in NWC remains unclear.
View Article and Find Full Text PDF