Publications by authors named "Shengnan Luo"

Biliary tract cancer (BTC), encompassing diseases such as intrahepatic (ICC), extrahepatic cholangiocarcinoma (ECC), and gallbladder cancer (GBC), is not only on the rise but also poses a significant and urgent health threat due to its high malignancy. Genomic differences point to the possibility that these subtypes represent distinct diseases. Elucidation of the specific distribution of T cell subsets, critical to cancer immunity, across these diseases could provide better insights into the unique biology of BTC subtypes and help identify potential precision medicine strategies.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) T cell therapy, which targets tumors with high specificity through the recognition of particular antigens, has emerged as one of the most rapidly advancing modalities in immunotherapy, demonstrating substantial success against hematological malignancies. However, previous generations of CAR-T cell therapy encountered numerous challenges in treating solid tumors, such as the lack of suitable targets, high immunosuppression, suboptimal persistence, and insufficient infiltration owing to the complexities of the tumor microenvironment, all of which limited their efficacy. In this review, we focus on the current therapeutic targets of fourth-generation CAR-T cells, also known as armored CAR-T cells, and explore the mechanisms by which these engineered cells navigate the tumor microenvironment by targeting its various components.

View Article and Find Full Text PDF

Pyroptosis, a newly identified form of programmed cell death intertwined with inflammatory responses, is facilitated by the Gasdermin family's pore-forming activity, leading to cell lysis and the release of pro-inflammatory cytokines. This process is a double-edged sword in innate immunity, offering protection against pathogens while risking excessive inflammation and tissue damage when dysregulated. Specifically, pyroptosis operates through two distinct signaling pathways, namely the Caspase-1 pathway and the Caspase-4/5/11 pathway.

View Article and Find Full Text PDF

Intrahepatic cholangiocarcinoma (iCCA) is an aggressive cancer with an extremely poor prognosis, and new treatment options are needed. Recently, immunotherapy has emerged as an efficient treatment against malignant tumors, but less effective in iCCA. Activation of stimulator of interferon genes (STING) signaling could reignite immunologically inert tumors, but the expression and role of STING in iCCA remains to be determined.

View Article and Find Full Text PDF

Background And Aims: HCC, particularly the multifocal HCC, features aggressive invasion and dismal prognosis. Locoregional treatments were often refractory to eliminate tumor tissue, resulting in residual tumor cells persisting and subsequent progression. Owing to problematic delivery to the tumor tissue, systemic therapies, such as lenvatinib (LEN) therapy, show limited clinical benefit in preventing residual tumor progression.

View Article and Find Full Text PDF

Here, we present a protocol for the detection of the two STING isoforms (erSTING and pmSTING) in human peripheral blood mononuclear cells or mouse splenocytes using Western blot and PCR. We detail steps to construct plasmids encoding each isoform and transfer them into mouse and human cell lines. Finally, we describe how to detect cell membrane localization of pmSTING using flow cytometry, immunoprecipitation, and immunofluorescence.

View Article and Find Full Text PDF

Ferroptosis is a recently identified iron-dependent form of intracellular lipid peroxide accumulation-mediated cell death. Different from other types of cell death mechanisms, it exhibits distinct biological and morphological features characterized by the loss of lipid peroxidase repair activity caused by glutathione peroxidase 4, the presence of redox-active iron, and the oxidation of phospholipids-containing polyunsaturated fatty acids. In recent years, studies have shown that ferroptosis plays a key role in various liver diseases such as alcoholic liver injury, non-alcoholic steatohepatitis, liver cirrhosis, and liver cancer.

View Article and Find Full Text PDF

It has been revealed that 2'3'-cyclic-GMP-AMP (cGAMP), a second messenger that activates the antiviral stimulator of IFN genes (STING), elicits an antitumoral immune response. Since cGAMP cannot cross the cell membrane, it is not clear how intracellular STING has been activated by extracellular cGAMP until SLC19A1 was identified as an importer to transport extracellular cGAMP into the cytosol. However, SLC19A1-deficient cells also sense extracellular cGAMP, suggesting the presence of mechanisms other than the facilitating transporters for STING sensing extracellular cGAMP.

View Article and Find Full Text PDF

Despite impressive clinical success, cancer immunotherapy based on immune checkpoint blockade remains ineffective in colorectal cancer (CRC). Stimulator of interferon genes (STING) is a novel potential target and STING agonists have shown potential anti-tumor efficacy. Combined therapy based on synergistic mechanism can overcome the resistance.

View Article and Find Full Text PDF

Purpose: Colon cancer (CC) is a serious disease burden. The prognosis of patients with CC is different, so looking for effective biomarkers to predict prognosis is vitally important. Ferroptosis is a promising therapeutic and diagnosis strategy in CC.

View Article and Find Full Text PDF

Background: Immune checkpoint inhibitors (ICIs), including anti-PD-1 therapy, have limited efficacy in patients with microsatellite stable (MSS) colorectal cancer (CRC). Interleukin 17A (IL-17A) activity leads to a protumor microenvironment, dependent on its ability to induce the production of inflammatory mediators, mobilize myeloid cells and reshape the tumor environment. In the present study, we aimed to investigate the role of IL-17A in resistance to antitumor immunity and to explore the feasibility of anti-IL-17A combined with anti-PD-1 therapy in MSS CRC murine models.

View Article and Find Full Text PDF

Approximately 85% colorectal cancers (CRCs) are thought to evolve through the adenoma-to-carcinoma sequence associated with specific molecular alterations, including the 5-hydroxymethylcytosine (5hmC) signature in circulating cell-free DNA (cfDNA). To explore colorectal disease progression and evaluate the use of cfDNA as a potential diagnostic factor for CRC screening, here, we performed genome-wide 5hmC profiling in plasma cfDNA and tissue genomic DNA (gDNA) acquired from 101 samples (63 plasma and 38 tissues), collected from 21 early-stage CRC patients, 21 AD patients, and 21 healthy controls (HC). The gDNA and cfDNA 5hmC signatures identified in gene bodies and promoter regions in CRC and AD groups were compared with those in HC group.

View Article and Find Full Text PDF

Purpose: This study aimed to evaluate the mechanism by which miR-29c expression in fibroblasts regulates renal interstitial fibrosis.

Methods: We stimulated NRK-49F cells with TGF-β1 to mimic the effects of fibrosis , while unilateral ureteral obstruction (UUO) was performed to obstruct the mid-ureter in mice. MiR-29c mimic or miR-29c inhibitor was used to mediate genes expressions .

View Article and Find Full Text PDF

Previous studies have shown that sarcopenic obesity is highly prevalent in patients with chronic kidney disease (CKD). Here, the association between CKD and sarcopenic obesity were investigated. The 5/6 nephrectomy was performed to establish CKD in mice.

View Article and Find Full Text PDF