The spontaneous generation of hydrogen peroxide (HO) within atmospheric microdroplets, such as raindrops and aerosols, plays a crucial role in various environmental processes including pollutant degradation and oxidative stress. However, quantifying hydroxyl radicals (•OH), essential for HO formation, remains challenging due to their short lifespan and low concentration. This study addresses this gap by presenting a highly sensitive and selective surface-enhanced Raman scattering (SERS) nanosensor specifically designed for quantifying •OH within water microdroplets.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2023
Although superhydrophobic surfaces have various promising applications, their fabrication methods are often limited to 2D plane surfaces that are vulnerable to abrasion and have limited adhesion to the substrate. Herein, an ultraviolet (UV) curable ink with bulk superhydrophobicity, consisting of poly(dimethylsiloxane) (PDMS) resins, hydrophobic silica, and solvent (porogen), was successfully developed for UV-assisted direct write printing processing. After UV curing of the ink followed by solvent evaporation, the generated porous structure cooperates with silica particles to form a self-similar and hierarchical structure throughout the bulk material, which can keep its original morphology even after cyclic abrasion (over 1000 times) and thus exhibits durable superhydrophobicity.
View Article and Find Full Text PDFGreen fabrication of superhydrophobic surface by water-based processing is still challenging, because introduction of the substances with hydrophilic moieties compromises its superhydrophobicity. Herein, a plasmon-driven photochemical reduction reaction under ultraviolet light (UVA) irradiation is first discovered and is applied to deoxygenation of hydrophilic organic adsorbates on rough nano-Ag coating for the formation of stable superhydrophobic surface. A nano-Ag coating with strong localized surface plasmon resonance in the UVA region is prepared by a water-based silver mirror reaction and results in a unique chemical reduction reaction on its surface.
View Article and Find Full Text PDFReducing lunar dust adhesion to various material surfaces is important for protecting equipment from damage during lunar exploration missions. In this study, we investigate the lunar dust-mitigation ability and dust adhesion force of aluminum (Al) substrates prepared using different etching methods. Among them, composite etching methods (combining chemical and electrochemical steps) can result in multiscale structures with micro- and nanoroughness, reducing the contact area between the substrate and thus decreasing lunar dust adhesion.
View Article and Find Full Text PDFA highly reproducible surface-enhanced Raman scattering (SERS) unsupported liquid-state platform (ULP) was developed for accurate quantitative determination of triazophos. Herein, citrate-reduced Ag NPs suspension was concentrated and placed in a stainless steel perforated template to form the SERS ULP. The relative standard deviation of the SERS measurements was less than 5% (n ≥ 10), and the R of the calibration curve was 0.
View Article and Find Full Text PDF