Publications by authors named "Shengman Li"

Solution-processed colloidal quantum dots (CQDs) are promising candidates for broadband photodetectors from visible light to shortwave infrared (SWIR). However, large-size PbS CQDs sensitive to longer SWIR are mainly exposed with nonpolar (100) facets on the surface, which lack robust passivation strategies. Herein, an innovative passivation strategy that employs planar cation, is introduced to enable face-to-face coupling on (100) facets and strengthen halide passivation on (111) facets.

View Article and Find Full Text PDF

The growth of data and Internet of Things challenges traditional hardware, which encounters efficiency and power issues owing to separate functional units for sensors, memory, and computation. In this study, we designed an α-phase indium selenide (α-InSe) transistor, which is a two-dimensional ferroelectric semiconductor as the channel material, to create artificial optic-neural and electro-neural synapses, enabling cutting-edge processing-in-sensor (PIS) and computing-in-memory (CIM) functionalities. As an optic-neural synapse for low-level sensory processing, the α-InSe transistor exhibits a high photoresponsivity (2855 A/W) and detectivity (2.

View Article and Find Full Text PDF

Dynamically engineering the optical and electrical properties in two-dimensional (2D) materials is of great significance for designing the related functions and applications. The introduction of foreign-atoms has previously been proven to be a feasible way to tune the band structure and related properties of 3D materials; however, this approach still remains to be explored in 2D materials. Here, we systematically demonstrate the growth of vanadium-doped molybdenum disulfide (V-doped MoS) monolayers via an alkali metal-assisted chemical vapor deposition method.

View Article and Find Full Text PDF

Artificial synapse networks capable of massively parallel computing and mimicking biological neural networks can potentially improve the processing efficiency of existing information technologies. Semiconductor devices functioning as excitatory and inhibitory synapses are crucial for developing intelligence systems, such as traffic control systems. However, achieving reconfigurability between two working modes (inhibitory and excitatory) and bilingual synaptic behavior in a single transistor remains challenging.

View Article and Find Full Text PDF

Optoelectronic synaptic devices integrating light-perception and signal-storage functions hold great potential in neuromorphic computing for visual information processing, as well as complex brain-like learning, memorizing, and reasoning. Herein, the successful growth of MoS monolayer arrays assisted by gold nanorods guided precursor nucleation is demonstrated. Optical, spectral, and morphology characterizations of MoS prove that arrayed flakes are homogeneous monolayers, and they are further fabricated as optoelectronic devices showing featured photocurrent loops and stable optical responses.

View Article and Find Full Text PDF

Multifunctional reconfigurable devices, with higher information capacity, smaller size, and more functions, are urgently needed and draw most attention in frontiers in information technology. 2D semiconductors, ascribing to ultrathin body and easy electrostatic control, show great potential in developing reconfigurable functional units. This work proposes a novel double-gate field-effect transistor architecture with equal top and bottom gate (TG and BG) and realizes flexible optimization of the subthreshold swing (SS) and threshold voltage (V ).

View Article and Find Full Text PDF

The integration of multiple electronic or optoelectronic devices is an effective strategy to use their unique functions to realize a specific goal. A state-of-the-art photodetector (PD) array can realize real-time image sensing, but the image information will disappear immediately with the removal of the light stimuli. Here, we design a visible light sensing and recording system by the integration of a perovskite PD array with a tungsten trioxide-based electrochromic device (ECD) array (10 × 10 pixels).

View Article and Find Full Text PDF

Although indium tin oxide (ITO) is widely used in optoelectronics due to its high optical transmittance and electrical conductivity, its degenerate doping limits exploitation as a semiconduction material. In this work, we created short-channel active transistors based on an ultra-thin (down to 4 nm) ITO channel and a high-quality, lanthanum-doped hafnium oxide dielectric of equivalent oxide thickness of 0.8 nm, with performance comparative to that of existing metal oxides and emerging two-dimensional materials.

View Article and Find Full Text PDF

Few-layer black phosphorus (BP) has recently emerged as a promising two-dimensional (2D) material for electronic and optoelectronic devices because of its high mobility and tunable band gap. However, BP is known to quickly degrade and oxidize in ambient conditions by breaking of the P-P bonds. As a result, there is a growing need to encapsulate BP that avoids oxygen and water while retaining the high electric performance of the devices.

View Article and Find Full Text PDF

A range of novel two-dimensional materials have been actively explored for More Moore and More-than-Moore device applications because of their ability to form van der Waals heterostructures with unique electronic properties. However, most of the reported electronic devices exhibit insufficient control of multifunctional operations. Here, we leverage the band-structure alignment properties of narrow-bandgap black phosphorus and large-bandgap molybdenum disulfide to realize vertical heterostructures with an ultrahigh rectifying ratio approaching 10 and on-off ratio up to 10.

View Article and Find Full Text PDF