Publications by authors named "Shenglong Liao"

The integration of theranostics, which combines diagnostics with therapeutics, has markedly improved the early detection of diseases, precise medication management, and assessment of treatment outcomes. In the realm of oncology, organoplatinum-based supramolecular coordination complexes (SCCs) that can coload therapeutic agents and imaging molecules have emerged as promising candidates for multimodal theranostics of tumors. To address the challenges of tumor-targeted delivery and multimodal theranostics for SCCs, this study employs a cell membrane cloaking strategy to fabricate biomimetic metallacage nanoparticles (MCNPs) with multimodal imaging capabilities and homologous targeting capabilities.

View Article and Find Full Text PDF

Supramolecular coordination complexes (SCCs) are popular for their structural diversity and functional adaptability, which make them suitable for a wide range of applications. Photophysical and mechanical performance of SCCs are the most attractive characteristics, yet their ionically conductive behavior and potential in electrical sensing have been rarely investigated. This study reports a well-designed SCC that integrates orthogonal metal coordination and host-guest interactions to achieve sensitive electrical thermal sensing.

View Article and Find Full Text PDF

This study provides a comprehensive overview of the preparation methods for polyhedral oligomeric silsesquioxane (POSS) monomers and polymer/POSS nanocomposites. It focuses on the latest advancements in using POSS to design polymer nanocomposites with reduced dielectric constants. The study emphasizes exploring the potential of POSS, either alone or in combination with other materials, to decrease the dielectric constant and dielectric loss of various polymers, including polyimides, bismaleimide resins, poly(aryl ether)s, polybenzoxazines, benzocyclobutene resins, polyolefins, cyanate ester resins, and epoxy resins.

View Article and Find Full Text PDF
Article Synopsis
  • Stabilizing liquids in complex shapes is difficult due to surface tension, but a new method uses fast interfacial polymerization of n-butyl cyanoacrylate (BCA) to overcome this challenge without additives.
  • The process allows for immediate full coverage of the liquid interface, enabling the formation of non-spherical droplets while maintaining the integrity of the internal aqueous phase.
  • The biocompatibility of BCA makes these droplets promising for applications in synthetic biology, such as serving as micro-bioreactors for enzyme reactions and bacterial cultures.
View Article and Find Full Text PDF

In the context of the constant impending energy crisis, the lithium-ion battery as a burgeoning energy storage means is showing extraordinary talents in many energy relevant investigations. However, fire and explosion would probably occur when the battery is encountered with overheating, at which the shrinking of the separator routinely causes an internal short circuit. Herein, we develop a kind of novel shape-memorized current collector (SMCC), which can successfully brake battery thermal runaway at the battery internal overheating status.

View Article and Find Full Text PDF

Artificial intelligence (AI) has become increasingly popular along with the development of the bionic neural system. Ionic conductors play an important role in the AI system due to the ability of bionic sensing and signal transporting. Traditional low-polarity elastomers possess outstanding mechanical strength and stability, such as polyurethane, which is difficult to be directly endowed with ionic conductivity without impairing its properties.

View Article and Find Full Text PDF

In an effort to prevent or minimize icing hazards, techniques and materials for icing inhibition and deicing have always been highly favored throughout human history. This work discovers the integrated anti-icing and deicing effects of poly(styrene--butadiene--styrene) triblock rubber (SBS) after its easy oxidation in iodine vapor. Iodine oxidation happens on the block of polybutadiene, featured by the conversion of SBS from hydrophobic to amphiphilic and the improved capability of photothermal conversion.

View Article and Find Full Text PDF

Droplet impact is a ubiquitous natural phenomenon that has been widely utilized to inspire and facilitate many industrial applications. Compared to the widely studied water droplet impact onto identical liquid surfaces, the water droplet impact onto an oil layer floating on a water bath (OLW) receives far less attention and its potential application has never been exploited. Herein, the process of water droplet impact onto the OLW is investigated with emphasis on the metastable states and potential applications.

View Article and Find Full Text PDF

Polyurethane (PU) thermosets offer great favors to our daily life on account of their excellent mechanical, physical, and chemical properties as well as appreciable biocompatibility. Nevertheless, PU waste is increasingly causing environmental and health-related problems as it is mostly resistant to chemical degradation under mild conditions. Herein, we report a kind of PU thermoset with silaketal leakages in its main chains to enable polymer degradation in response to weak acids, even in edible vinegar.

View Article and Find Full Text PDF

Photothermal therapy has aroused great attention and showed promising potential in minimally invasive tumor ablation, but the clinical translation is still stifled by the concerns of unwanted injury to normal tissues. The safety concerns might be completely solved only when the two security obstacles of "material-toxicity" and "photo-toxicity" were overcome simultaneously. Herein, a completely non-toxic food-grade photothermal transduction agent (PTA) with double safety guarantees was invented, which shows an absolute transformation of the photothermal effect from "0" to "1" after being triggered by an acidic tumor microenvironment.

View Article and Find Full Text PDF

Acute kidney injury (AKI) has emerged as a major public health problem affecting millions of people worldwide without specific and satisfactory therapies due to the lack of an effective delivery approach. In the past few decades, hydrogels present infinite potential in localized drug delivery, while their poor adhesion to moist tissue and isotropic diffusion character always restrict the therapeutic efficiency and may lead to unwanted side effects. Herein, we proposed a novel therapeutic strategy for AKI via a customizable artificial kidney capsule (AKC) together with a mesenchymal stem cell (MSC)-laden hydrogel.

View Article and Find Full Text PDF

Bioprinting is an attractive technology for building tissues from scratch to explore entire new cell configurations, which brings numerous opportunities for biochemical research such as engineering tissues for therapeutic tissue repair or drug screening. However, bioprinting is faced with the limited number of suitable bioinks that enable bioprinting with excellent printability, high structural fidelity, physiological stability, and good biocompatibility, particularly in the case of extrusion-based bioprinting. Herein, we demonstrate a composite bioink based on gelatin, bacterial cellulose (BC), and microbial transglutaminase (mTG enzyme) with outstanding printing controllability and durable architectural integrity.

View Article and Find Full Text PDF

Elastomers presenting good elasticity, ductility, and chemical resistance at low temperatures can serve as superior performers for explorations in extremely cold environments. However, no commercially available elastomer to date can comprehensively fulfill those demands. Here, a perfluoropolyether (PFPE)-based network crosslinked by dynamic urethane chemistry is demonstrated, which may satisfy the demands of application in ultracold environments.

View Article and Find Full Text PDF

Hydrogel coatings pave an avenue for improving the lubricity, biocompatibility, and flexibility of solid surfaces. From the viewpoint of practical applications, this work establishes a scalable method to firmly adhere hydrogel layers to diverse solid surfaces. The strategy, termed as renatured hydrogel painting (RHP), refers to adhering dehydrated xerogel to a surface with appropriate glues, followed by the formation of a hydrogel layer after rehydration of the xerogel.

View Article and Find Full Text PDF

Humic acid, a kind of widespread organic macromolecule on earth, is naturally formed through the microbial biodegradation of plant, animal, and microorganism residues. Because of the large number of active functional groups (phenolic hydroxyl and carboxyl), humic acid has been considered as a biocompatible, green, and low-cost biosurfactant recently. In this work, based on the sensitivity of humic acid to the external chemical environment, the oil/water interfacial behavior of sodium humate at different pH or in the presence of metal ions is closely investigated.

View Article and Find Full Text PDF

Percutaneous chemical ablation (PCA) is the oldest and most established technique for treating small solid tumors in organs. It has been widely used in clinics even on an outpatient basis. However, compared with the emerging microwave or magnetic hyperthermal ablation, PCA is faced with relatively poor necrosis results and needs to repeat multiple sessions.

View Article and Find Full Text PDF

Despite great progresses in bioprinting materials and technologies, immense challenges still remain when printing tubular tissues or organs with satisfying mechanical and chemical properties, such as blood vessel, colon, and trachea. Herein, a promising extrusion system based on an interfacial diffusion printing (IDP) technique for one-step printing of tubular tissue grafts is proposed. Specifically, this technique offers great convenience to prepare hollow hydrogel fibers with excellent mechanical properties and satisfactory biocompatibility.

View Article and Find Full Text PDF

In this data explosion age, a large amount of data is generated every day. Such a fast data growth has aroused great interest in the field of data storage. Conventional data storage materials are mainly composed of hard and brittle materials but they may break in the case of mechanical operations, causing irreversible data loss.

View Article and Find Full Text PDF

The shortage of tissue resources is currently a serious challenge that limits the clinical therapy to patients with tissue loss or end-stage organ failure. The booming development of 3D printing offers unprecedented hope for tissue engineering since it can construct cells and biomaterials into a 3D tissue-mimicking object with precise control over size and shape. However, it is still challenging to fabricate artificial living tissues or organs due to the extreme complexity of biological tissues.

View Article and Find Full Text PDF

With the use of coordinated complexes between aliphatic diols and calcium chloride (CaCl) as green electrolytes, a body compatible, ecofriendly and low-cost thermometer is successfully developed. This particular conductive liquid possesses unique features of ultrafast response and high sensitivity against temperature change. The influences of CaCl concentration and the category of aliphatic diols on conductivity change reveal that the thermal sensing abilities of such green electrolytes are positively relevant to the viscosity change along with temperature change.

View Article and Find Full Text PDF

The generation of uniform droplets has been extensively investigated owing to its profound potentials both in scientific research and engineering applications. Although various methods have been put forward to expand this area, new innovations are still needed to improve the technical convenience and save instrumental cost. In this feature article, we highlight an interfacial emulsification technique that we developed in the past several years.

View Article and Find Full Text PDF

For the purpose of stretchable electronics, broad interests have been paid to elastic conductors by which high tensile strain over 100% can be readily achieved. Here, a scalable-processing, dyeing-like strategy for highly stretchable polypyrrole elastomer (1450% in strain) is conceived without particular topological design. This approach effectively improves the mechanical properties of the classic insoluble polypyrrole by confined polymerization within an elastic polymer network.

View Article and Find Full Text PDF

Generation of uniform emulsion droplets mixed with multiple components is one of the key issues in the field of lab in a drop. Traditionally, droplet microfluidic chips are often served as the prime choice while designing and fabricating microfluidic chips always rely on skilled technician and specialized equipment, severely restricting its wide accessibility. In this work, an alternative technique, called multichannel dynamic interfacial printing (MC-DIP), was proposed for multicomponent droplet generation.

View Article and Find Full Text PDF

Solid materials for CO capture and storage have attracted enormous attention for gaseous separation, environmental protection, and climate governance. However, their preparation and recovery meet the problems of high energy and financial cost. Herein, a controllable CO capture and storage process is accomplished in an emulsion-templated polymer foam, in which CO is breathed-in under dark and breathed-out under light illumination.

View Article and Find Full Text PDF

With the use of an ionic liquid as the ultrathermosensitive fluid, a paper thermometer is successfully developed with intrinsic ability of ultrafast response and high stability upon temperature change. The fluidic nature allows the ionic liquid to be easily deposited on paper by pen writing or inkjet printing, affording great promise for large-scale fabrication of low-cost paper sensors. Owing to the advantages of nonvolatilization, excellent continuity and deformability, the thermosensitive ink trapped within the cellulose fibers of paper matrix has no leakage or evaporation at open states, ensuring the excellent stability and repeatability of thermal sensing against arbitrary bending and folding operation.

View Article and Find Full Text PDF