The source area of the Yangtze River is located in the hinterland of the Qinghai-Tibet Plateau, which is known as the "Earth's third pole." It is the water conservation area and the natural barrier of the ecosystem of the Yangtze River basin. It is also the most sensitive area of the natural ecosystem, and the ecological environment is very fragile.
View Article and Find Full Text PDFAccurate evaluation of fish stock biomass is essential for effective conservation management and targeted species enhancement efforts. However, this remains challenging owing to limited data availability. Therefore, we present an integrated modeling framework combining catch per unit effort with ensemble species distribution modeling called CPUESDM, which explicitly assesses and validates the spatial distribution of stock biomass for freshwater fish species with limited data, applied to Herzensteinia microcephalus.
View Article and Find Full Text PDFBacterial community plays a key role in environmental and ecological processes of river ecosystems. Given the special climatic and geographical conditions, studying the compositional characteristics of microorganisms in highland rivers and the relationship between such microorganisms and water physicochemical factors is important for an in-depth understanding of microbial ecological mechanisms. In the present study, high-throughput sequencing was used to investigate and study the bacterioplankton community of the Huangshui River in the ecotone zone of the Qinghai Plateau and Loess Plateau.
View Article and Find Full Text PDFPrevious studies report significant changes on biotic communities caused by cascade reservoir construction. However, factors regulating the spatial-temporal plankton patterns in alpine cascade reservoir systems have not been fully explored. The current study explored effects of environmental factors on the longitudinal plankton patterns, through a 5-year-long study on the environmental factors and communities of phytoplankton and zooplankton in an alpine cascade reservoir system located upstream of Yellow River region.
View Article and Find Full Text PDFPlanktonic microorganisms play a key role in the biogeochemical processes of the aquatic system, and they may be affected by many factors. High-throughput sequencing technology was used in this study to investigate and study the bacterioplankton community of water bodies in the upper reaches of the Heihe River Basin in Qinghai Plateau. Results showed that Proteobacteria, Firmicutes, Bacteroidetes and Actinobacteria are the predominant phyla in this river section, while the main genera are Thiomonas, Acidibacillus, Acidocella, Rhodanobacter, Acidithiobacter and Gallionella, which are autochthonous in the acid-mine drainage.
View Article and Find Full Text PDFThe potential nutrient stoichiometry changes caused by trout cage aquaculture is concerned especially in oligotrophic waters. Long-term total nitrogen (N), total phosphorus (P) and N:P ratio changes in 6 cascade reservoirs with rainbow trout cage aquaculture in the oligotrophic upstream Yellow River (UYR) were studied from 2013 to 2017 in this paper. The 5-year monitoring results showed that N, P and N:P ratio levels showed no obvious long-term changes in high-altitude oligotrophic waters with rainbow trout cage aquaculture.
View Article and Find Full Text PDF