Organelle-targeted photosensitizers (PSs) have demonstrated enhanced phototherapeutic effect by specifically destroying subcellular organelle. As a critical cellular organelle, the cell membrane plays crucial roles in maintaining cell integrity and regulating cellular communications. To date, a variety of membrane-targeted PSs have been developed and shown exceptional therapeutic effects.
View Article and Find Full Text PDFEmbolization is often used to block blood supply for controlling the growth of fibroids and malignant tumors, but limited by embolic agents lacking spontaneous targeting and post-treatment removal. So we first adopted nonionic poly(acrylamide--acrylonitrile) with an upper critical solution temperature (UCST) to build up self-localizing microcages by inverse emulsification. The results showed that these UCST-type microcages behaved with the appropriate phase-transition threshold value around 40 °C, and spontaneously underwent an expansion-fusion-fission cycle under the stimulus of mild temperature hyperthermia.
View Article and Find Full Text PDFSuper-resolution imaging provides a powerful approach to image dynamic biomolecule events at nanoscale resolution. An ingenious method involving tuning intramolecular spirocyclization in rhodamine offers an appealing strategy to design cell-permeable fluorogenic probes for super-resolution imaging. Nevertheless, precise control of rhodamine spirocyclization presents a significant challenge.
View Article and Find Full Text PDFHerein, two mitochondria-targeting photosensitizers (PSs, CCVJ-Mito-1 and CCVJ-Mito-2) that exhibit a turn-on fluorescence response towards increasing viscosity are reported. Notably, CCVJ-Mito-2 exhibits absorption in the near-infrared (NIR) region, and can be employed as a NIR PS targeting mitochondria and a fluorescent probe for tracking mitochondrial viscosity changes during photodynamic therapy (PDT). This dual functional PS can help to shed light on the dynamic changes of the cellular microenvironment during PDT and further guide the PDT process.
View Article and Find Full Text PDFRevealing interfacial structure and dynamics has been one of the essential thematic topics in material science and condensed matter physics. Synchrotron-based x-ray scattering techniques can deliver unique and insightful probing of interfacial structures and dynamics, in particular, in reflection geometries with higher surface and interfacial sensitivity than transmission geometries. We demonstrate the design and implementation of an in situ shearing x-ray measurement system, equipped with both inline parallel-plate and cone-and-plate shearing setups and operated at the advanced photon source at Argonne National Laboratory, to investigate the structures and dynamics of end-tethered polymers at the solid-liquid interface.
View Article and Find Full Text PDFCysteine-based polyzwitterionic brushes have been prepared via a two-step route. First, poly(allyl methacrylate) (PAMA) brushes have been grown from the surface of silicon substrates using surface-initiated atom transfer radical polymerization. The obtained PAMA brushes with free pendant vinyl groups were further modified via radical thiol-ene addition reaction to attach l-cysteine moieties.
View Article and Find Full Text PDFInt J Nanomedicine
September 2019
Over the past two decades, nano-sized biosystems have increasingly been utilized to deliver various pharmaceutical agents to a specific region, organ or tissue for controllable precision therapy. Whether solid nanohydrogel, nanosphere, nanoparticle, nanosheet, micelles and lipoproteins, or "hollow" nanobubble, liposome, nanocapsule, and nanovesicle, all of them can exhibit outstanding loading and releasing capability as a drug vehicle - in particular polymeric nanovesicle, a microscopic hollow sphere that encloses a water core with a thin polymer membrane. Besides excellent stability, toughness and liposome-like compatibility, polymeric nanovesicles offer considerable scope for tailoring properties by changing their chemical structure, block lengths, stimulus-responsiveness and even conjugation with biomolecules.
View Article and Find Full Text PDFContrast Media Mol Imaging
April 2020
In ultrasonography, ultrasound contrast agents (UCAs) that possess high acoustic impedance mismatch with the bulk medium are frequently employed to highlight the borders between tissues by enhanced ultrasound scattering in a clinic. Typically, the most common UCA, microbubble, is generally close in size to a red blood cell (<∼10 μm). These microscale UCAs cannot be directly entrapped into the target cells but generate several orders of magnitude stronger echo signals than the nanoscale ones.
View Article and Find Full Text PDFPhys Chem Chem Phys
November 2018
As a common physicochemical phenomenon, protonation can cause molecules, atoms or ions with lone-pair electrons to become charged, and can further cause some changes in their physical and chemical properties. Our study first focused on the molecular protonation process and accompanying transitions of the oil/water interface properties in an electric field. The relationship between the protonation degree increment and applied voltage was proposed as a guide for controlling the protonation via applying an electric field.
View Article and Find Full Text PDFInt J Nanomedicine
September 2018
Cancer has become one of the primary causes of death worldwide. Current cancer-therapy schemes are progressing relatively slowly in terms of reducing mortality, prolonging survival, time and enhancing cure rate, owing to the enormous obstacles of cancer pathophysiology. Therefore, specific diagnosis and therapy for malignant tumors are becoming more and more crucial and urgent, especially for early cancer diagnosis and cancer-targeted therapy.
View Article and Find Full Text PDFUltrasound contrast agents (UCA) represented by gas-filled microbubble, can provide simultaneous and co-localized enhancement on image contrast to help disease diagnosis by highlighting tissue borders. Nowadays, Some UCAs (e.g.
View Article and Find Full Text PDF