Introduction: Neurofilament light (NfL), chitinase-3-like protein 1 (YKL-40), and neurogranin (Ng) are biomarkers for Alzheimer's disease (AD) to monitor axonal damage, astroglial activation, and synaptic degeneration, respectively.
Methods: We performed genome-wide association studies (GWAS) using DNA and cerebrospinal fluid (CSF) samples from the EMIF-AD Multimodal Biomarker Discovery study for discovery, and the Alzheimer's Disease Neuroimaging Initiative study for validation analyses. GWAS were performed for all three CSF biomarkers using linear regression models adjusting for relevant covariates.
Alzheimer's disease is biologically heterogeneous, and detailed understanding of the processes involved in patients is critical for development of treatments. CSF contains hundreds of proteins, with concentrations reflecting ongoing (patho)physiological processes. This provides the opportunity to study many biological processes at the same time in patients.
View Article and Find Full Text PDFAlzheimer's disease (AD) is characterised by abnormal amyloid beta and tau processing. Previous studies reported that cerebrospinal fluid (CSF) total tau (t-tau) levels vary between patients. Here we show that CSF t-tau variability is associated with distinct impairments in neuronal plasticity mediated by gene repression factors SUZ12 and REST.
View Article and Find Full Text PDFBackground: Previous studies suggest that Dickkopf-1 (DKK1), an inhibitor of Wnt signaling, plays a role in amyloid-induced toxicity and hence Alzheimer's disease (AD). However, the effect of DKK1 expression on protein expression, and whether such proteins are altered in disease, is unknown.
Objective: We aim to test whether DKK1 induced protein signature obtained in vitro were associated with markers of AD pathology as used in the amyloid/tau/neurodegeneration (ATN) framework as well as with clinical outcomes.
Sleep problems are related to the elevated levels of the Alzheimer's disease (AD) biomarker β-amyloid (Aβ). Hypotheses about the causes of this relationship can be generated from molecular markers of sleep problems identified in rodents. A major marker of sleep deprivation is Homer1a, a neural protein coded by the HOMER1 gene, which has also been implicated in brain Aβ accumulation.
View Article and Find Full Text PDFIntroduction: Plasma proteins have been widely studied as candidate biomarkers to predict brain amyloid deposition to increase recruitment efficiency in secondary prevention clinical trials for Alzheimer's disease. Most such biomarker studies are targeted to specific proteins or are biased toward high abundant proteins.
Methods: 4001 plasma proteins were measured in two groups of participants (discovery group = 516, replication group = 365) selected from the European Medical Information Framework for Alzheimer's disease Multimodal Biomarker Discovery study, all of whom had measures of amyloid.
Although chronic inflammation increases many cancers' risk, how inflammation facilitates cancer development is still not well studied. Recognizing whether and when inflamed tissues transition to cancerous tissues is of utmost importance. To unbiasedly infer molecular events, immune cell types, and secreted factors contributing to the inflammation-to-cancer (I2C) transition, we develop a computational package called "SwitchDetector" based on liver, gastric, and colon cancer I2C data.
View Article and Find Full Text PDFThe recent rapid development of high-throughput technology enables the study of molecular signatures for cancer diagnosis and prognosis at multiple levels, from genomic and epigenomic to transcriptomic. These unbiased large-scale scans provide important insights into the detection of cancer-related signatures. In addition to single-layer signatures, such as gene expression and somatic mutations, integrating data from multiple heterogeneous platforms using a systematic approach has been proven to be particularly effective for the identification of classification markers.
View Article and Find Full Text PDFDigital transcriptome analysis by next-generation sequencing discovers substantial mRNA variants. Variation in gene expression underlies many biological processes and holds a key to unravelling mechanism of common diseases. However, the current methods for construction of co-expression networks using overall gene expression are originally designed for microarray expression data, and they overlook a large number of variations in gene expressions.
View Article and Find Full Text PDFInt J Comput Biol Drug Des
September 2011
We constructed gene co-expression networks and identified the ovarian cancer-related genes by network structure analysis in two independent ovarian cancer studies. To study the properties of networks, modules were identified and their functions and roles were investigated. Our results showed that the inferred networks were structurally conservative and the identified modules were highly overlapped between two data sets.
View Article and Find Full Text PDFBMC Syst Biol
November 2010
Background: Glioblastoma arises from complex interactions between a variety of genetic alterations and environmental perturbations. Little attention has been paid to understanding how genetic variations, altered gene expression and microRNA (miRNA) expression are integrated into networks which act together to alter regulation and finally lead to the emergence of complex phenotypes and glioblastoma.
Results: We identified association of somatic mutations in 14 genes with glioblastoma, of which 8 genes are newly identified, and association of loss of heterozygosity (LOH) is identified in 11 genes with glioblastoma, of which 9 genes are newly discovered.
Despite the great success of genome-wide association studies (GWAS) in identification of the common genetic variants associated with complex diseases, the current GWAS have focused on single-SNP analysis. However, single-SNP analysis often identifies only a few of the most significant SNPs that account for a small proportion of the genetic variants and offers only a limited understanding of complex diseases. To overcome these limitations, we propose gene and pathway-based association analysis as a new paradigm for GWAS.
View Article and Find Full Text PDF